ResNetV1 - Deep Residual Learning for Image Recognition - 2015
ResNetV2 - Identity Mappings in Deep Residual Networks - 2016

1. ResNetV1

ResNetV1 论文中给出的网络结构:

Table1 中,ResNet-18 和 ResNet-34 采用 Figure5(左) 的两层 bottleneck 结构;ResNet-50,ResNet-101 和 ResNet-152 采用 Figure5(右) 的三层 bottleneck 结构.

Tabel1 中的方括号右边乘以的数字,如,2,3,4,5,8,表示 bottleneck 的个数. 如 ResNet-101 的 conv4_x 中乘以36,则,该 block 包含 23 个 bottleneck.

残差单元:

1.1. PyTorch中的定义

    import torch.nn as nn
    import math
    import torch.utils.model_zoo as model_zoo
    
    __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152']
    
    model_urls = {
        'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
        'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
        'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
        'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
        'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    }
    
    def conv3x3(in_planes, out_planes, stride=1):
        """3x3 convolution with padding"""
        return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                         padding=1, bias=False)
    
    class BasicBlock(nn.Module):
        # Figure5(左) Block
        expansion = 1
    
        def __init__(self, inplanes, planes, stride=1, downsample=None):
            super(BasicBlock, self).__init__()
            self.conv1 = conv3x3(inplanes, planes, stride)
            self.bn1 = nn.BatchNorm2d(planes)
            self.relu = nn.ReLU(inplace=True)
            self.conv2 = conv3x3(planes, planes)
            self.bn2 = nn.BatchNorm2d(planes)
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            residual = x
    
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
    
            if self.downsample is not None:
                residual = self.downsample(x)
    
            out += residual
            out = self.relu(out)
    
            return out
    
    class Bottleneck(nn.Module):
            # Figure5(右) Block
        expansion = 4
    
        def __init__(self, inplanes, planes, stride=1, downsample=None):
            super(Bottleneck, self).__init__()
            self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
            self.bn1 = nn.BatchNorm2d(planes)
            self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                                   padding=1, bias=False)
            self.bn2 = nn.BatchNorm2d(planes)
            self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
            self.bn3 = nn.BatchNorm2d(planes * self.expansion)
            self.relu = nn.ReLU(inplace=True)
            self.downsample = downsample
            self.stride = stride
    
        def forward(self, x):
            residual = x
    
            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)
    
            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)
    
            out = self.conv3(out)
            out = self.bn3(out)
    
            if self.downsample is not None:
                residual = self.downsample(x)
    
            out += residual
            out = self.relu(out)
    
            return out
    
    class ResNet(nn.Module):
    
        def __init__(self, block, layers, num_classes=1000):
            self.inplanes = 64
            super(ResNet, self).__init__()
            self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                   bias=False)
            self.bn1 = nn.BatchNorm2d(64)
            self.relu = nn.ReLU(inplace=True)
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            self.layer1 = self._make_layer(block, 64, layers[0])
            self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
            self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
            self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
            self.avgpool = nn.AvgPool2d(7, stride=1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)
    
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                elif isinstance(m, nn.BatchNorm2d):
                    nn.init.constant_(m.weight, 1)
                    nn.init.constant_(m.bias, 0)
    
        def _make_layer(self, block, planes, blocks, stride=1):
            downsample = None
            if stride != 1 or self.inplanes != planes * block.expansion:
                downsample = nn.Sequential(
                    nn.Conv2d(self.inplanes, planes * block.expansion,
                              kernel_size=1, stride=stride, bias=False),
                    nn.BatchNorm2d(planes * block.expansion),
                )
    
            layers = []
            layers.append(block(self.inplanes, planes, stride, downsample))
            self.inplanes = planes * block.expansion
            for i in range(1, blocks):
                layers.append(block(self.inplanes, planes))
    
            return nn.Sequential(*layers)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.relu(x)
            x = self.maxpool(x)
    
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
    
            x = self.avgpool(x)
            x = x.view(x.size(0), -1)
            x = self.fc(x)
    
            return x
    
    def resnet18(pretrained=False, **kwargs):
        """Constructs a ResNet-18 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
        return model
    
    def resnet34(pretrained=False, **kwargs):
        """Constructs a ResNet-34 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
        return model
    
    def resnet50(pretrained=False, **kwargs):
        """Constructs a ResNet-50 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
        return model
    
    def resnet101(pretrained=False, **kwargs):
        """Constructs a ResNet-101 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
        return model
    
    def resnet152(pretrained=False, **kwargs):
        """Constructs a ResNet-152 model.
    
        Args:
            pretrained (bool): If True, returns a model pre-trained on ImageNet
        """
        model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
        if pretrained:
            model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
        return model

2. ResNetV2

ResNetV1 和 ResNetV2 残差单元对比:

何凯明给出的 resnet-1k-layers bottleneck 的 lua 实现:

  local function bottleneck(nInputPlane, nOutputPlane, stride)
      
      local nBottleneckPlane = nOutputPlane / 4
      
      if nInputPlane == nOutputPlane then -- most Residual Units have this shape      
         local convs = nn.Sequential()
         -- conv1x1
         convs:add(SBatchNorm(nInputPlane))
         convs:add(ReLU(true))
         convs:add(Convolution(nInputPlane,nBottleneckPlane,1,1,stride,stride,0,0))
        
         -- conv3x3
         convs:add(SBatchNorm(nBottleneckPlane))
         convs:add(ReLU(true))
         convs:add(Convolution(nBottleneckPlane,nBottleneckPlane,3,3,1,1,1,1))
        
         -- conv1x1
         convs:add(SBatchNorm(nBottleneckPlane))
         convs:add(ReLU(true))
         convs:add(Convolution(nBottleneckPlane,nOutputPlane,1,1,1,1,0,0))
        
         local shortcut = nn.Identity()
        
         return nn.Sequential()
            :add(nn.ConcatTable()
               :add(convs)
               :add(shortcut))
            :add(nn.CAddTable(true))
      else -- Residual Units for increasing dimensions
         local block = nn.Sequential()
         -- common BN, ReLU
         block:add(SBatchNorm(nInputPlane))
         block:add(ReLU(true))
        
         local convs = nn.Sequential()     
         -- conv1x1
         convs:add(Convolution(nInputPlane,nBottleneckPlane,1,1,stride,stride,0,0))
        
         -- conv3x3
         convs:add(SBatchNorm(nBottleneckPlane))
         convs:add(ReLU(true))
         convs:add(Convolution(nBottleneckPlane,nBottleneckPlane,3,3,1,1,1,1))
        
         -- conv1x1
         convs:add(SBatchNorm(nBottleneckPlane))
         convs:add(ReLU(true))
         convs:add(Convolution(nBottleneckPlane,nOutputPlane,1,1,1,1,0,0))
        
         local shortcut = nn.Sequential()
         shortcut:add(Convolution(nInputPlane,nOutputPlane,1,1,stride,stride,0,0))
        
         return block
            :add(nn.ConcatTable()
               :add(convs)
               :add(shortcut))
            :add(nn.CAddTable(true))
      end
   end
Last modification:June 6th, 2022 at 11:26 pm