原文: TensorFlow - Pix2Pix

该文主要是介绍采用 conditional GAN 进行图像转换(image to image translation), 可参考 Image-to-Image Translation with Conditional Adversarial Networks - 2016

基于该技术,可以实现黑白图像的彩色化, 将谷歌地图转换为谷歌地球,等等. 这里,以建筑立面(building facades) 转换为真实建筑图(real buildings).

采用的数据集为:CMP Facade DatabaseImage-to-Image Translation with Conditional Adversarial Networks - 2016 论文作者提供的一个预处理版本: https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/.

每个 epoch 在 V100 GPU 上大概耗时 15s.

如下图, 为训练 200 epochs 后模型生成的例图:

1. 配置

import os
import time
import matplotlib.pyplot as plt

import tensorflow as tf

2. 加载数据集

2.1. 数据增强

对于训练数据集, 进行随机抖动(random jittering) 和镜像(mirroring)处理.

[1] - 随机抖动, 图像先缩放为286x286, 再随机裁剪 256x256.

[2] - 随机镜像, 图像随机水平翻转,如, 左到右.

_URL = 'https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facades.tar.gz'

path_to_zip = tf.keras.utils.get_file('facades.tar.gz',
                                      origin=_URL,
                                      extract=True)

PATH = os.path.join(os.path.dirname(path_to_zip), 'facades/')

#
BUFFER_SIZE = 400
BATCH_SIZE = 1
IMG_WIDTH = 256
IMG_HEIGHT = 256

#
def load(image_file):
  image = tf.io.read_file(image_file)
  image = tf.image.decode_jpeg(image)

  w = tf.shape(image)[1]

  w = w // 2
  real_image = image[:, :w, :]
  input_image = image[:, w:, :]

  input_image = tf.cast(input_image, tf.float32)
  real_image = tf.cast(real_image, tf.float32)

  return input_image, real_image

#
inp, re = load(PATH+'train/100.jpg')
# casting to int for matplotlib to show the image
plt.figure()
plt.imshow(inp/255.0)
plt.figure()
plt.imshow(re/255.0)

def resize(input_image, real_image, height, width):
  input_image = tf.image.resize(input_image, [height, width],
                                method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
  real_image = tf.image.resize(real_image, [height, width],
                               method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

  return input_image, real_image

def random_crop(input_image, real_image):
  stacked_image = tf.stack([input_image, real_image], axis=0)
  cropped_image = tf.image.random_crop(
      stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])

  return cropped_image[0], cropped_image[1]

# normalizing the images to [-1, 1]
def normalize(input_image, real_image):
  input_image = (input_image / 127.5) - 1
  real_image = (real_image / 127.5) - 1

  return input_image, real_image

@tf.function()
def random_jitter(input_image, real_image):
  # resizing to 286 x 286 x 3
  input_image, real_image = resize(input_image, real_image, 286, 286)

  # randomly cropping to 256 x 256 x 3
  input_image, real_image = random_crop(input_image, real_image)

  if tf.random.uniform(()) > 0.5:
    # random mirroring
    input_image = tf.image.flip_left_right(input_image)
    real_image = tf.image.flip_left_right(real_image)

  return input_image, real_image

如图, 图像的处理流程为:

[1] - 将图像尺寸调整到更大的 height 和 width;

[2] - 随机裁剪到目标尺寸;

[3] - 随机水平翻转图像.

plt.figure(figsize=(6, 6))
for i in range(4):
  rj_inp, rj_re = random_jitter(inp, re)
  plt.subplot(2, 2, i+1)
  plt.imshow(rj_inp/255.0)
  plt.axis('off')
plt.show()

2.2. 数据集加载

def load_image_train(image_file):
  input_image, real_image = load(image_file)
  input_image, real_image = random_jitter(input_image, real_image)
  input_image, real_image = normalize(input_image, real_image)

  return input_image, real_image

def load_image_test(image_file):
  input_image, real_image = load(image_file)
  input_image, real_image = resize(input_image, real_image,
                                   IMG_HEIGHT, IMG_WIDTH)
  input_image, real_image = normalize(input_image, real_image)

  return input_image, real_image

3. 输入 Pipelines

# train dataset
train_dataset = tf.data.Dataset.list_files(PATH+'train/*.jpg')
train_dataset = train_dataset.map(
    load_image_train,
    num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
train_dataset = train_dataset.batch(BATCH_SIZE)

# test dataset
test_dataset = tf.data.Dataset.list_files(PATH+'test/*.jpg')
test_dataset = test_dataset.map(load_image_test)
test_dataset = test_dataset.batch(BATCH_SIZE)

4. 构建生成器

[1] - 网络结构是 U-Net 的改良.

[2] - 编码器(encoder)的每个 block 结构为:Conv -> Batchnorm -> Leaky ReLU.

[3] - 解码器(decoder)的每个 block 结构为:Transposed Conv -> Batchnorm -> Dropout(applied to the first 3 blocks) -> ReLU.

[4] - 编码器和解码器之间采用跳跃连接(skip connection),类似于 U-Net.

OUTPUT_CHANNELS = 3
#编码器
def downsample(filters, size, apply_batchnorm=True):
  initializer = tf.random_normal_initializer(0., 0.02)

  result = tf.keras.Sequential()
  result.add(
      tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
                             kernel_initializer=initializer, use_bias=False))

  if apply_batchnorm:
    result.add(tf.keras.layers.BatchNormalization())

  result.add(tf.keras.layers.LeakyReLU())

  return result

#
down_model = downsample(3, 4)
down_result = down_model(tf.expand_dims(inp, 0))
print (down_result.shape)
# (1, 128, 128, 3)

#解码器
def upsample(filters, size, apply_dropout=False):
  initializer = tf.random_normal_initializer(0., 0.02)

  result = tf.keras.Sequential()
  result.add(
    tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
                                    padding='same',
                                    kernel_initializer=initializer,
                                    use_bias=False))

  result.add(tf.keras.layers.BatchNormalization())

  if apply_dropout:
      result.add(tf.keras.layers.Dropout(0.5))

  result.add(tf.keras.layers.ReLU())

  return result

#
up_model = upsample(3, 4)
up_result = up_model(down_result)
print (up_result.shape)
# (1, 256, 256, 3)

#生成器
def Generator():
  inputs = tf.keras.layers.Input(shape=[256,256,3])

  down_stack = [
    downsample(64, 4, apply_batchnorm=False), # (bs, 128, 128, 64)
    downsample(128, 4), # (bs, 64, 64, 128)
    downsample(256, 4), # (bs, 32, 32, 256)
    downsample(512, 4), # (bs, 16, 16, 512)
    downsample(512, 4), # (bs, 8, 8, 512)
    downsample(512, 4), # (bs, 4, 4, 512)
    downsample(512, 4), # (bs, 2, 2, 512)
    downsample(512, 4), # (bs, 1, 1, 512)
  ]

  up_stack = [
    upsample(512, 4, apply_dropout=True), # (bs, 2, 2, 1024)
    upsample(512, 4, apply_dropout=True), # (bs, 4, 4, 1024)
    upsample(512, 4, apply_dropout=True), # (bs, 8, 8, 1024)
    upsample(512, 4), # (bs, 16, 16, 1024)
    upsample(256, 4), # (bs, 32, 32, 512)
    upsample(128, 4), # (bs, 64, 64, 256)
    upsample(64, 4), # (bs, 128, 128, 128)
  ]

  initializer = tf.random_normal_initializer(0., 0.02)
  last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,
                                         strides=2,
                                         padding='same',
                                         kernel_initializer=initializer,
                                         activation='tanh') # (bs, 256, 256, 3)

  x = inputs

  # Downsampling through the model
  skips = []
  for down in down_stack:
    x = down(x)
    skips.append(x)

  skips = reversed(skips[:-1])

  # Upsampling and establishing the skip connections
  for up, skip in zip(up_stack, skips):
    x = up(x)
    x = tf.keras.layers.Concatenate()([x, skip])

  x = last(x)

  return tf.keras.Model(inputs=inputs, outputs=x)

#
generator = Generator()
tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)

#
gen_output = generator(inp[tf.newaxis,...], training=False)
plt.imshow(gen_output[0,...])

4.1. 生成器损失函数

[1] - 计算的是生成图像和全是1数组的 sigmoid 交叉熵损失函数.

[2] - Image-to-Image Translation with Conditional Adversarial Networks - 2016 还采用了 L1 损失函数,计算生成图像和目标图像间的 MAE(均方误差).

[3] - 生成器总损失函数的计算为:

$$ loss = gan\_loss + \lambda * l1\_loss $$

其中,$\lambda=100$.

生成器损失函数实现如:

LAMBDA = 100
def generator_loss(disc_generated_output, gen_output, target):
  gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output)

  # mean absolute error
  l1_loss = tf.reduce_mean(tf.abs(target - gen_output))

  total_gen_loss = gan_loss + (LAMBDA * l1_loss)

  return total_gen_loss, gan_loss, l1_loss

流程如下:

5. 构建判别器

[1] - 判别器是 PatchGAN;

[2] - 判别器每个 block 结构为:Conv -> BatchNorm -> Leaky ReLU

[3] - 判别器最后一层的输出 shape 为:(batch_size, 30, 30, 1)

[4] - 输出的每个 30x30 patch 分别对输入图像的 70x70 部分进行分类(这种结构被称为 PatchGAN)

[5] - 判别器包含两个输入:

  • 输入图像和目标图像,其应该被分类为 real.
  • 输入图像和生成图像,其应该被分类为 fake.
  • 采用 tf.concat([inp, tar], axis=-1) 将两个输入连接.
def Discriminator():
  initializer = tf.random_normal_initializer(0., 0.02)

  inp = tf.keras.layers.Input(shape=[256, 256, 3], name='input_image')
  tar = tf.keras.layers.Input(shape=[256, 256, 3], name='target_image')

  x = tf.keras.layers.concatenate([inp, tar]) # (bs, 256, 256, channels*2)

  down1 = downsample(64, 4, False)(x) # (bs, 128, 128, 64)
  down2 = downsample(128, 4)(down1) # (bs, 64, 64, 128)
  down3 = downsample(256, 4)(down2) # (bs, 32, 32, 256)

  zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (bs, 34, 34, 256)
  conv = tf.keras.layers.Conv2D(512, 4, strides=1,
                                kernel_initializer=initializer,
                                use_bias=False)(zero_pad1) # (bs, 31, 31, 512)

  batchnorm1 = tf.keras.layers.BatchNormalization()(conv)

  leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)

  zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (bs, 33, 33, 512)

  last = tf.keras.layers.Conv2D(1, 4, strides=1,
                                kernel_initializer=initializer)(zero_pad2) # (bs, 30, 30, 1)

  return tf.keras.Model(inputs=[inp, tar], outputs=last)

#
discriminator = Discriminator()
tf.keras.utils.plot_model(discriminator, show_shapes=True, dpi=64)

#
disc_out = discriminator([inp[tf.newaxis,...], gen_output], training=False)
plt.imshow(disc_out[0,...,-1], vmin=-20, vmax=20, cmap='RdBu_r')
plt.colorbar()

5.1. 判别器损失函数

[1] - 判别器损失函数两个输入: real 图像和生成图像.

[2] - real_loss 为 real 图像与全1数组之间的 sigmoid 交叉熵损失函数.

[3] - generated_loss 为生成图像与全0数组之间的 sigmoid 交叉熵损失函数.

[4] - total_loss 为 real_loss 和 generated_loss 的之和.

loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(disc_real_output, disc_generated_output):
  real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)

  generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)

  total_disc_loss = real_loss + generated_loss

  return total_disc_loss

流程如下:

6. 定义 Optimizers 和 Checkpoint-saver

generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
                                 discriminator_optimizer=discriminator_optimizer,
                                 generator=generator,
                                 discriminator=discriminator)

7. 生成图像

创建一个训练过程中图像可视化的函数:

[1] - 将测试数据集图像送到生成器;

[2] - 生成器将其输入图像转化为输出;

[3] - 最后可视化预测图像.

def generate_images(model, test_input, tar):
  prediction = model(test_input, training=True)
  plt.figure(figsize=(15,15))

  display_list = [test_input[0], tar[0], prediction[0]]
  title = ['Input Image', 'Ground Truth', 'Predicted Image']

  for i in range(3):
    plt.subplot(1, 3, i+1)
    plt.title(title[i])
    # getting the pixel values between [0, 1] to plot it.
    plt.imshow(display_list[i] * 0.5 + 0.5)
    plt.axis('off')
  plt.show()
#
for example_input, example_target in test_dataset.take(1):
  generate_images(generator, example_input, example_target)

8. 训练

[1] - 每个输入样本生成一个输出;

[2] - 输入图像和生成的图像作为判别器的第一个输入;输入图像和目标图像作为判别器的第二个输入;

[3] - 然后,计算生成器损失函数和判别器损失函数;

[4] - 接着,计算关于生成器和判别器变量的梯度,并应用于优化器(optimizer);

[5] - TensorBoard 记录损失函数日志.

实现如下:

EPOCHS = 150

import datetime
log_dir="logs/"

summary_writer = tf.summary.create_file_writer(
  log_dir + "fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

#
@tf.function
def train_step(input_image, target, epoch):
  with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
    gen_output = generator(input_image, training=True)

    disc_real_output = discriminator([input_image, target], training=True)
    disc_generated_output = discriminator([input_image, gen_output], training=True)

    gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target)
    disc_loss = discriminator_loss(disc_real_output, disc_generated_output)

  generator_gradients = gen_tape.gradient(gen_total_loss,
                                          generator.trainable_variables)
  discriminator_gradients = disc_tape.gradient(disc_loss,
                                               discriminator.trainable_variables)

  generator_optimizer.apply_gradients(zip(generator_gradients,
                                          generator.trainable_variables))
  discriminator_optimizer.apply_gradients(zip(discriminator_gradients,
                                              discriminator.trainable_variables))

  with summary_writer.as_default():
    tf.summary.scalar('gen_total_loss', gen_total_loss, step=epoch)
    tf.summary.scalar('gen_gan_loss', gen_gan_loss, step=epoch)
    tf.summary.scalar('gen_l1_loss', gen_l1_loss, step=epoch)
    tf.summary.scalar('disc_loss', disc_loss, step=epoch)

8.1. 训练主循环

[1] - epochs 迭代

[2] - 每个 epoch,清除显示的图片,并运行generate_images 以显示训练进度;

[3] - 每个 epoch,迭代处理训练数据集,并打印..

[4] - 每 20 epochs 保存一次 checkpoint.

def fit(train_ds, epochs, test_ds):
  for epoch in range(epochs):
    start = time.time()

    display.clear_output(wait=True)

    for example_input, example_target in test_ds.take(1):
      generate_images(generator, example_input, example_target)
    print("Epoch: ", epoch)

    # Train
    for n, (input_image, target) in train_ds.enumerate():
      print('.', end='')
      if (n+1) % 100 == 0:
        print()
      train_step(input_image, target, epoch)
    print()

    # saving (checkpoint) the model every 20 epochs
    if (epoch + 1) % 20 == 0:
      checkpoint.save(file_prefix = checkpoint_prefix)

    print ('Time taken for epoch {} is {} sec\n'.format(epoch + 1,
                                                        time.time()-start))
  checkpoint.save(file_prefix = checkpoint_prefix)

#
fit(train_dataset, EPOCHS, test_dataset)

#
# restoring the latest checkpoint in checkpoint_dir
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))

训练循环会保存日志信息,可以在 TensorBoard 监视训练过程.

9. 测试数据集生成图像

# Run the trained model on a few examples from the test dataset
for inp, tar in test_dataset.take(5):
  generate_images(generator, inp, tar)

10. 完整实现

#!/usr/bin/python3
#!--*-- coding: utf-8 --*--
import os
import time
import matplotlib.pyplot as plt
import datetime

import tensorflow as tf
print(tf.__version__)
#2.3.0

#
def load(image_file):
    image = tf.io.read_file(image_file)
    image = tf.image.decode_jpeg(image)

    w = tf.shape(image)[1]

    w = w // 2
    real_image = image[:, :w, :]
    input_image = image[:, w:, :]

    input_image = tf.cast(input_image, tf.float32)
    real_image = tf.cast(real_image, tf.float32)

    return input_image, real_image


def resize(input_image, real_image, height, width):
    input_image = tf.image.resize(input_image, [height, width],  method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    real_image = tf.image.resize(real_image, [height, width], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

    return input_image, real_image


def random_crop(input_image, real_image, IMG_HEIGHT = 256, IMG_WIDTH = 256):
    stacked_image = tf.stack([input_image, real_image], axis=0)
    cropped_image = tf.image.random_crop(stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])

    return cropped_image[0], cropped_image[1]


# normalizing the images to [-1, 1]
def normalize(input_image, real_image):
    input_image = (input_image / 127.5) - 1
    real_image = (real_image / 127.5) - 1

    return input_image, real_image


@tf.function()
def random_jitter(input_image, real_image):
    # resizing to 286 x 286 x 3
    input_image, real_image = resize(input_image, real_image, 286, 286)

    # randomly cropping to 256 x 256 x 3
    input_image, real_image = random_crop(input_image, real_image)

    if tf.random.uniform(()) > 0.5:
        # random mirroring
        input_image = tf.image.flip_left_right(input_image)
        real_image = tf.image.flip_left_right(real_image)

    return input_image, real_image

#
def load_image_train(image_file):
    input_image, real_image = load(image_file)
    input_image, real_image = random_jitter(input_image, real_image)
    input_image, real_image = normalize(input_image, real_image)

    return input_image, real_image

def load_image_test(image_file, IMG_HEIGHT = 256, IMG_WIDTH = 256):
    input_image, real_image = load(image_file)
    input_image, real_image = resize(input_image, real_image, IMG_HEIGHT, IMG_WIDTH)
    input_image, real_image = normalize(input_image, real_image)

    return input_image, real_image


#编码器
def downsample(filters, size, apply_batchnorm=True):
    initializer = tf.random_normal_initializer(0., 0.02)

    result = tf.keras.Sequential()
    result.add(tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
                                      kernel_initializer=initializer, use_bias=False))

    if apply_batchnorm:
        result.add(tf.keras.layers.BatchNormalization())

    result.add(tf.keras.layers.LeakyReLU())

    return result

#解码器
def upsample(filters, size, apply_dropout=False):
    initializer = tf.random_normal_initializer(0., 0.02)

    result = tf.keras.Sequential()
    result.add(tf.keras.layers.Conv2DTranspose(filters, size, strides=2, padding='same',
                                               kernel_initializer=initializer, use_bias=False))

    result.add(tf.keras.layers.BatchNormalization())

    if apply_dropout:
        result.add(tf.keras.layers.Dropout(0.5))

    result.add(tf.keras.layers.ReLU())

    return result


#生成器
def Generator(OUTPUT_CHANNELS = 3):
    inputs = tf.keras.layers.Input(shape=[256, 256, 3])

    down_stack = [
        downsample(64, 4, apply_batchnorm=False),  # (bs, 128, 128, 64)
        downsample(128, 4),  # (bs, 64, 64, 128)
        downsample(256, 4),  # (bs, 32, 32, 256)
        downsample(512, 4),  # (bs, 16, 16, 512)
        downsample(512, 4),  # (bs, 8, 8, 512)
        downsample(512, 4),  # (bs, 4, 4, 512)
        downsample(512, 4),  # (bs, 2, 2, 512)
        downsample(512, 4),  # (bs, 1, 1, 512)
    ]

    up_stack = [
        upsample(512, 4, apply_dropout=True),  # (bs, 2, 2, 1024)
        upsample(512, 4, apply_dropout=True),  # (bs, 4, 4, 1024)
        upsample(512, 4, apply_dropout=True),  # (bs, 8, 8, 1024)
        upsample(512, 4),  # (bs, 16, 16, 1024)
        upsample(256, 4),  # (bs, 32, 32, 512)
        upsample(128, 4),  # (bs, 64, 64, 256)
        upsample(64, 4),  # (bs, 128, 128, 128)
    ]

    initializer = tf.random_normal_initializer(0., 0.02)
    last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,
                                           strides=2,
                                           padding='same',
                                           kernel_initializer=initializer,
                                           activation='tanh')  # (bs, 256, 256, 3)

    x = inputs

    # Downsampling through the model
    skips = []
    for down in down_stack:
        x = down(x)
        skips.append(x)

    skips = reversed(skips[:-1])

    # Upsampling and establishing the skip connections
    for up, skip in zip(up_stack, skips):
        x = up(x)
        x = tf.keras.layers.Concatenate()([x, skip])

    x = last(x)

    return tf.keras.Model(inputs=inputs, outputs=x)

#
def Discriminator():
    initializer = tf.random_normal_initializer(0., 0.02)

    inp = tf.keras.layers.Input(shape=[256, 256, 3], name='input_image')
    tar = tf.keras.layers.Input(shape=[256, 256, 3], name='target_image')

    x = tf.keras.layers.concatenate([inp, tar])  # (bs, 256, 256, channels*2)

    down1 = downsample(64, 4, False)(x)  # (bs, 128, 128, 64)
    down2 = downsample(128, 4)(down1)  # (bs, 64, 64, 128)
    down3 = downsample(256, 4)(down2)  # (bs, 32, 32, 256)

    zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3)  # (bs, 34, 34, 256)
    conv = tf.keras.layers.Conv2D(512, 4, strides=1,
                                  kernel_initializer=initializer,
                                  use_bias=False)(zero_pad1)  # (bs, 31, 31, 512)

    batchnorm1 = tf.keras.layers.BatchNormalization()(conv)

    leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)

    zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu)  # (bs, 33, 33, 512)

    last = tf.keras.layers.Conv2D(1, 4, strides=1, kernel_initializer=initializer)(zero_pad2)  # (bs, 30, 30, 1)

    return tf.keras.Model(inputs=[inp, tar], outputs=last)

#
loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def generator_loss(disc_generated_output, gen_output, target, LAMBDA = 100):
    gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output)

    # mean absolute error
    l1_loss = tf.reduce_mean(tf.abs(target - gen_output))

    total_gen_loss = gan_loss + (LAMBDA * l1_loss)

    return total_gen_loss, gan_loss, l1_loss


def discriminator_loss(disc_real_output, disc_generated_output):
    real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)

    generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)

    total_disc_loss = real_loss + generated_loss

    return total_disc_loss


#
def generate_images(model, test_input, tar):
    prediction = model(test_input, training=True)
    plt.figure(figsize=(15, 15))

    display_list = [test_input[0], tar[0], prediction[0]]
    title = ['Input Image', 'Ground Truth', 'Predicted Image']

    for i in range(3):
        plt.subplot(1, 3, i + 1)
        plt.title(title[i])
        # getting the pixel values between [0, 1] to plot it.
        plt.imshow(display_list[i] * 0.5 + 0.5)
        plt.axis('off')
    # plt.show()

#
@tf.function
def train_step(input_image, target, epoch):
    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        gen_output = generator(input_image, training=True)

        disc_real_output = discriminator([input_image, target], training=True)
        disc_generated_output = discriminator([input_image, gen_output], training=True)

        gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target)
        disc_loss = discriminator_loss(disc_real_output, disc_generated_output)

    generator_gradients = gen_tape.gradient(gen_total_loss, generator.trainable_variables)
    discriminator_gradients = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

    generator_optimizer.apply_gradients(zip(generator_gradients, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(discriminator_gradients, discriminator.trainable_variables))

    with summary_writer.as_default():
        tf.summary.scalar('gen_total_loss', gen_total_loss, step=epoch)
        tf.summary.scalar('gen_gan_loss', gen_gan_loss, step=epoch)
        tf.summary.scalar('gen_l1_loss', gen_l1_loss, step=epoch)
        tf.summary.scalar('disc_loss', disc_loss, step=epoch)

#
def fit(train_ds, epochs, test_ds):
    for epoch in range(epochs):
        start = time.time()

        for example_input, example_target in test_ds.take(1):
            generate_images(generator, example_input, example_target)
        plt.savefig('epoch_{}.png'.format(epoch), format='png',)
        print("Epoch: ", epoch)

        # Train
        for n, (input_image, target) in train_ds.enumerate():
            print('.', end='')
            if (n + 1) % 100 == 0:
                print()
            train_step(input_image, target, epoch)
        print()

        # saving (checkpoint) the model every 20 epochs
        if (epoch + 1) % 20 == 0:
            checkpoint.save(file_prefix=checkpoint_prefix)

        print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, time.time() - start))
    checkpoint.save(file_prefix=checkpoint_prefix)


#
_URL = 'https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facades.tar.gz'

path_to_zip = tf.keras.utils.get_file('facades.tar.gz', origin=_URL, extract=True)

PATH = os.path.join(os.path.dirname(path_to_zip), 'facades/')
#
inp, re = load(PATH+'train/100.jpg')
# # casting to int for matplotlib to show the image
# plt.figure()
# plt.imshow(inp/255.0)
# plt.figure()
# plt.imshow(re/255.0)
#
# #
# plt.figure(figsize=(6, 6))
# for i in range(4):
#   rj_inp, rj_re = random_jitter(inp, re)
#   plt.subplot(2, 2, i+1)
#   plt.imshow(rj_inp/255.0)
#   plt.axis('off')
# plt.show()

#
BATCH_SIZE = 1
# train dataset
train_dataset = tf.data.Dataset.list_files(PATH+'train/*.jpg')
train_dataset = train_dataset.map(load_image_train, num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.shuffle(400) #BUFFER_SIZE = 400
train_dataset = train_dataset.batch(BATCH_SIZE)

# test dataset
test_dataset = tf.data.Dataset.list_files(PATH+'test/*.jpg')
test_dataset = test_dataset.map(load_image_test)
test_dataset = test_dataset.batch(BATCH_SIZE)


# #
# down_model = downsample(3, 4)
# down_result = down_model(tf.expand_dims(inp, 0))
# print (down_result.shape)
# # (1, 128, 128, 3)
# #
# up_model = upsample(3, 4)
# up_result = up_model(down_result)
# print (up_result.shape)
# # (1, 256, 256, 3)

#
generator = Generator()
# tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)
#
discriminator = Discriminator()
# tf.keras.utils.plot_model(discriminator, show_shapes=True, dpi=64)

# #
# gen_output = generator(inp[tf.newaxis,...], training=False)
# plt.imshow(gen_output[0,...])
#
# #
# disc_out = discriminator([inp[tf.newaxis,...], gen_output], training=False)
# plt.imshow(disc_out[0,...,-1], vmin=-20, vmax=20, cmap='RdBu_r')
# plt.colorbar()

#
generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
                                 discriminator_optimizer=discriminator_optimizer,
                                 generator=generator,
                                 discriminator=discriminator)

# #
# for example_input, example_target in test_dataset.take(1):
#     generate_images(generator, example_input, example_target)

#
log_dir="logs/"
summary_writer = tf.summary.create_file_writer(
  log_dir + "fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

#
EPOCHS = 150
fit(train_dataset, EPOCHS, test_dataset)

#
# restoring the latest checkpoint in checkpoint_dir
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))


# Run the trained model on a few examples from the test dataset
for inp, tar in test_dataset.take(5):
  generate_images(generator, inp, tar)
Last modification:November 5th, 2020 at 05:42 pm