SoftmaxWithLossLayer 用于多类别图像分类问题,即数据集共 N 个类,但每张图片只能是其中一个类,如狗或猫. Caffe 处理分类问题中应用最普遍的 loss 层之一.
SoftmaxWithLossLayer 针对 one-of-many 的分类任务计算 multinomial logistic loss,通过 softmax 来得到每一类的概率分布,传递实值预测(real-valued predictions).
SoftmaxWithLoss 层先计算输入的经 softmax 的激活值,再计算 multinomial logistic loss,等价于 Softmax Layer(softmax 函数) + Multinomial Logistic Loss Layer(即 Cross Entropy Loss,交叉熵函数,常用于分类问题). 但具有更加数值稳定的梯度,在 test 阶段可以采用 SoftmaxLayer 来替换.
Softmax 激活函数:
${p_{nk} = exp(x_{nk})/[\sum_{i}exp(x_{ni})]}$
<h2>1. 网络层参数</h2>
bottom:
输入 Blob 向量,长度为2
输入 Input1 - 预测的 x,(N×C×H×W),是值在 [-inf, +inf]区间的数据Blob,表示 K=CHW 类的各类的预测 scores. 该层采用 softmax 函数 将 scores 映射到各类别的概率分布;
输入 Input2 - 参考 Label ${l}$,(N×1×1×1),是值为 ${l_n \in [0,1,2,...,K-1]}$ 的整数值数据Blob,表示 K 类的正确的类别标签.
top:
输出 Blob 向量,长度为 1
输出 Output1 - 对 softmax 层输出类别概率 p,计算得到的 cross-entropy classification loss(交叉熵分类损失),(1×1×1×1),${E=-\frac1N \sum^N_{n=1} log(p_n, l_n)}$.
<h2>2. prototxt 定义</h2>
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "fc7"
bottom: "label"
top: "loss"
loss_param{
ignore_label:0
}
}
<h2>3. Caffe SoftmaxWithLossLayer 定义</h2>
- 网络层 type:
SoftmaxWithLoss
- Doxygen Documentation
- 头文件:
./include/caffe/layers/softmax_loss_layer.hpp
- CPU 实现代码:
./src/caffe/layers/softmax_loss_layer.cpp
- CUDA GPU 实现代码:
./src/caffe/layers/softmax_loss_layer.cu
<h3>3.1 头文件 softmax_loss_layer.hpp</h3>
#ifndef CAFFE_SOFTMAX_WITH_LOSS_LAYER_HPP_
#define CAFFE_SOFTMAX_WITH_LOSS_LAYER_HPP_
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/layers/loss_layer.hpp"
#include "caffe/layers/softmax_layer.hpp"
namespace caffe {
/**
* 用处:
* @brief Computes the multinomial logistic loss for a one-of-many
* classification task, passing real-valued predictions through a
* softmax to get a probability distribution over classes.
*/
template <typename Dtype>
class SoftmaxWithLossLayer : public LossLayer<Dtype> {
public:
/**
* 可选 loss 参数:
* @param param provides LossParameter loss_param, with options:
* - ignore_label (optional) // 忽略不计算的 label
* Specify a label value that should be ignored when computing the loss.
* - normalize (optional, default true) // 归一化,默认为 true
* If true, the loss is normalized by the number of (nonignored) labels
* present; otherwise the loss is simply summed over spatial locations.
*/
explicit SoftmaxWithLossLayer(const LayerParameter& param)
: LossLayer<Dtype>(param) {}
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual inline const char* type() const { return "SoftmaxWithLoss"; }
virtual inline int ExactNumTopBlobs() const { return -1; }
virtual inline int MinTopBlobs() const { return 1; }
virtual inline int MaxTopBlobs() const { return 2; }
protected:
// 重载CPU和GPU正向传播虚函数
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
// 重载CPU和GPU反向传播虚函数
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
/// Read the normalization mode parameter and compute the normalizer based
/// on the blob size. If normalization_mode is VALID, the count of valid
/// outputs will be read from valid_count, unless it is -1 in which case
/// all outputs are assumed to be valid.
virtual Dtype get_normalizer(
LossParameter_NormalizationMode normalization_mode, int valid_count);
/// 采用 SoftmaxLayer 将预测值映射到概率分布的形式.
shared_ptr<Layer<Dtype> > softmax_layer_;
/// prob 保存了 SoftmaxLayer计算得到的输出概率预测值.
Blob<Dtype> prob_;
/// bottom vector holder used in call to the underlying SoftmaxLayer::Forward
vector<Blob<Dtype>*> softmax_bottom_vec_;
/// top vector holder used in call to the underlying SoftmaxLayer::Forward
vector<Blob<Dtype>*> softmax_top_vec_;
/// 是否有需要忽略的特定label.
bool has_ignore_label_;
/// 需要忽略计算的label.
int ignore_label_;
/// 归一化输出loss的方式.
LossParameter_NormalizationMode normalization_;
int softmax_axis_, outer_num_, inner_num_;
};
} // namespace caffe
#endif // CAFFE_SOFTMAX_WITH_LOSS_LAYER_HPP_
<h3>3.2 CPU 实现代码 softmax_loss_layer.cpp</h3>
#include <algorithm>
#include <cfloat>
#include <vector>
#include "caffe/layers/softmax_loss_layer.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
template <typename Dtype>
// 参数设置
void SoftmaxWithLossLayer<Dtype>::LayerSetUp(
const vector<Blob<Dtype>>& bottom, const vector<Blob<Dtype>>& top) {
LossLayer<Dtype>::LayerSetUp(bottom, top);
LayerParameter softmax_param(this->layer_param_);
softmax_param.set_type("Softmax");
softmax_layer_ = LayerRegistry<Dtype>::CreateLayer(softmax_param);
softmax_bottom_vec_.clear();
softmax_bottom_vec_.push_back(bottom[0]);
softmax_top_vec_.clear();
softmax_top_vec_.push_back(&prob_);
softmax_layer_->SetUp(softmax_bottom_vec_, softmax_top_vec_);
has_ignore_label_ =
this->layer_param_.loss_param().has_ignore_label();
if (has_ignore_label_) {
ignore_label_ = this->layer_param_.loss_param().ignore_label();
}
if (!this->layer_param_.loss_param().has_normalization() &&
this->layer_param_.loss_param().has_normalize()) {
normalization_ = this->layer_param_.loss_param().normalize() ?
LossParameter_NormalizationMode_VALID :
LossParameter_NormalizationMode_BATCH_SIZE;
} else {
normalization_ = this->layer_param_.loss_param().normalization();
}
}
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Reshape(
const vector<Blob<Dtype>>& bottom, const vector<Blob<Dtype>>& top) {
LossLayer<Dtype>::Reshape(bottom, top);
softmax_layer_->Reshape(softmax_bottom_vec_, softmax_top_vec_);
softmax_axis_ =
bottom[0]->CanonicalAxisIndex(this->layer_param_.softmax_param().axis());
outer_num_ = bottom[0]->count(0, softmax_axis_);
inner_num_ = bottom[0]->count(softmax_axis_ + 1);
CHECK_EQ(outer_num_ * inner_num_, bottom[1]->count())
<< "Number of labels must match number of predictions; "
<< "e.g., if softmax axis == 1 and prediction shape is (N, C, H, W), "
<< "label count (number of labels) must be NHW, "
<< "with integer values in {0, 1, ..., C-1}.";
if (top.size() >= 2) {
// softmax output
top[1]->ReshapeLike(*bottom[0]);
}
}
template <typename Dtype>
Dtype SoftmaxWithLossLayer<Dtype>::get_normalizer(
LossParameter_NormalizationMode normalization_mode, int valid_count) {
Dtype normalizer;
switch (normalization_mode) { // 归一化方法
case LossParameter_NormalizationMode_FULL:
normalizer = Dtype(outer_num_ * inner_num_);
break;
case LossParameter_NormalizationMode_VALID:
if (valid_count == -1) {
normalizer = Dtype(outer_num_ * inner_num_);
} else {
normalizer = Dtype(valid_count);
}
break;
case LossParameter_NormalizationMode_BATCH_SIZE:
normalizer = Dtype(outer_num_);
break;
case LossParameter_NormalizationMode_NONE:
normalizer = Dtype(1);
break;
default:
LOG(FATAL) << "Unknown normalization mode: "
<< LossParameter_NormalizationMode_Name(normalization_mode);
}
// 避免数据不带label导致normalizer为0,出现分母为0.
// max 处理防止出现 NaNs.
return std::max(Dtype(1.0), normalizer);
}
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Forward_cpu(
const vector<Blob<Dtype>>& bottom, const vector<Blob<Dtype>>& top) {
// 对 SoftmaxLayer 前向传播计算 softmax prob 值.
softmax_layer_->Forward(softmax_bottom_vec_, softmax_top_vec_);
const Dtype* prob_data = prob_.cpu_data();
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
Dtype loss = 0;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; j++) {
// 真实 Label 值
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
if (has_ignore_label_ && label_value == ignore_label_) {
continue;
}
DCHECK_GE(label_value, 0);
DCHECK_LT(label_value, prob_.shape(softmax_axis_));
// prob_data 是由 SoftmaxLayer 计算得到的
// 对 label 值相对应的 prob_data 预测概率值,进行 -log 操作,累加 bctch_size 个的值.
loss -= log(std::max(prob_data[i dim + label_value inner_num_ + j],
Dtype(FLT_MIN)));
++count;
}
}
// loss 除以样本总数,得到单个样本的平均 loss
top[0]->mutable_cpu_data()[0] = loss / get_normalizer(normalization_, count);
if (top.size() == 2) {
top[1]->ShareData(prob_);
}
}
template <typename Dtype>
void SoftmaxWithLossLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[1]) {
LOG(FATAL) << this->type()
<< " Layer cannot backpropagate to label inputs.";
}
if (propagate_down[0]) {
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
const Dtype* prob_data = prob_.cpu_data();
// 拷贝前向传播计算得到的 prob_data 到 偏导项 bottom_diff
caffe_copy(prob_.count(), prob_data, bottom_diff);
const Dtype* label = bottom[1]->cpu_data();
int dim = prob_.count() / outer_num_;
int count = 0;
for (int i = 0; i < outer_num_; ++i) {
for (int j = 0; j < inner_num_; ++j) {
const int label_value = static_cast<int>(label[i * inner_num_ + j]);
// 如果是 ignore_label,则偏导数 bottom_diff 值为0
if (has_ignore_label_ && label_value == ignore_label_) {
for (int c = 0; c < bottom[0]->shape(softmax_axis_); ++c) {
bottom_diff[i dim + c inner_num_ + j] = 0;
}
} else {
//偏导数计算
bottom_diff[i dim + label_value inner_num_ + j] -= 1;
++count;
}
}
}
// Scale gradient
Dtype loss_weight = top[0]->cpu_diff()[0] /
get_normalizer(normalization_, count);
caffe_scal(prob_.count(), loss_weight, bottom_diff);
}
}
#ifdef CPU_ONLY
STUB_GPU(SoftmaxWithLossLayer);
#endif
INSTANTIATE_CLASS(SoftmaxWithLossLayer);
REGISTER_LAYER_CLASS(SoftmaxWithLoss);
} // namespace caffe