图片相似性比较之哈希算法 - AIUAI

SSIM,Structural Similarity,结构相似性算法,用于衡量两幅图片相似度,也被用于图片质量评价(如压缩后图像与原图的相似度).

1. SSIM 基本原理

针对两幅图片,SSIM 计算组成包括三部分:亮度(luminance)对比对比度(contrast)对比结构(structure)对比.

其中,

[1] - C1,C2,C3为常数,以避免分母为0. 一般来说,C3=C2/2.

[2] - $\mu_x, \mu_y$ 分别为 x, y 的均值.

[3] - $\sigma_x^2, \sigma_y^2$ 分别为 x, y 的方差.

[4] - $\sigma_{xy}$ 为 x 和 y 的协方差.

[5] - S(x, y) 具有对称性、有界性和最大值唯一性.

[6] - SSIM值越大代表图像越相似 当且仅当 x=y 时, S(x,y)=1,即两幅图片完全一致.

每次计算的时候都从图片上取一个 NxN 的窗口,然后不断滑动窗口进行计算,最后取平均值作为全局的 SSIM.

2. SSIM skimage 实现

Scikit-image 库中提供了 structural_similarity 函数,计算 SSIM.

skimage.metrics.structural_similarity(im1, im2, *, #im1 和 im2 具有相同的尺寸.
                                      win_size=None, #滑窗大小,必须是奇数值.
                                      gradient=False, #是否返回关于 im2 的梯度.
                                      data_range=None, 
                                      multichannel=False, 
                                      gaussian_weights=False, 
                                      full=False, **kwargs)

具体实现可见:skimage/metrics/_structural_similarity.py

其中,

[1] - multichannl - 若为True,则仅将数组最后一维作为通道;SSIM是分别对每个通道分别计算相似性,然后求均值.

[2] - gaussian_weights - 若为True,每个图像块的均值和方差均采用一个标准差 sigma=1.5的高斯函数进行加权.

[3] - full - 若为 True,则还返回全局结构相似性图片结果S(x,y).

3. SSIM Python 实现

在python中计算ssim的方法(与Matlab结果一致)

import cv2
import numpy as np

def ssim(img1, img2):
  img1 = img1.astype(np.float64)
  img2 = img2.astype(np.float64)
  
  C1 = (0.01 * 255)**2
  C2 = (0.03 * 255)**2
  kernel = cv2.getGaussianKernel(11, 1.5)
  window = np.outer(kernel, kernel.transpose())
  mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
  mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
  mu1_sq = mu1**2
  mu2_sq = mu2**2
  mu1_mu2 = mu1 * mu2
  sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
  sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
  sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
  ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
  
  return ssim_map.mean()

def calculate_ssim(img1, img2):
  '''
  calculate SSIM
  the same outputs as MATLAB's
  img1, img2: [0, 255]
  '''
  if not img1.shape == img2.shape:
    raise ValueError('Input images must have the same dimensions.')
  if img1.ndim == 2:
    return ssim(img1, img2)
  elif img1.ndim == 3:
    if img1.shape[2] == 3:
      ssims = []
      for i in range(3):
        ssims.append(ssim(img1, img2))
      return np.array(ssims).mean()
    elif img1.shape[2] == 1:
      return ssim(np.squeeze(img1), np.squeeze(img2))
  else:
    raise ValueError('Wrong input image dimensions.')

#
img1 = cv2.imread("Test2_HR.bmp", 0)
img2 = cv2.imread("Test2_LR2.bmp", 0)
ss = calculate_ssim(img1, img2)

print(ss)

4. SSIM Pytorch 实现

Github - jorge-pessoa/pytorch-msssim

import torch
import torch.nn.functional as F
from math import exp
import numpy as np


def gaussian(window_size, sigma):
    gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
    return gauss/gauss.sum()


def create_window(window_size, channel=1):
    _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
    _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
    window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
    return window


def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
    # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
    if val_range is None:
        if torch.max(img1) > 128:
            max_val = 255
        else:
            max_val = 1

        if torch.min(img1) < -0.5:
            min_val = -1
        else:
            min_val = 0
        L = max_val - min_val
    else:
        L = val_range

    padd = 0
    (_, channel, height, width) = img1.size()
    if window is None:
        real_size = min(window_size, height, width)
        window = create_window(real_size, channel=channel).to(img1.device)

    mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
    mu2 = F.conv2d(img2, window, padding=padd, groups=channel)

    mu1_sq = mu1.pow(2)
    mu2_sq = mu2.pow(2)
    mu1_mu2 = mu1 * mu2

    sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq
    sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq
    sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2

    C1 = (0.01 * L) ** 2
    C2 = (0.03 * L) ** 2

    v1 = 2.0 * sigma12 + C2
    v2 = sigma1_sq + sigma2_sq + C2
    cs = torch.mean(v1 / v2)  # contrast sensitivity

    ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)

    if size_average:
        ret = ssim_map.mean()
    else:
        ret = ssim_map.mean(1).mean(1).mean(1)

    if full:
        return ret, cs
      
    return ret


def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=None):
    device = img1.device
    weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device)
    levels = weights.size()[0]
    ssims = []
    mcs = []
    for _ in range(levels):
        sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)

        # Relu normalize (not compliant with original definition)
        if normalize == "relu":
            ssims.append(torch.relu(sim))
            mcs.append(torch.relu(cs))
        else:
            ssims.append(sim)
            mcs.append(cs)

        img1 = F.avg_pool2d(img1, (2, 2))
        img2 = F.avg_pool2d(img2, (2, 2))

    ssims = torch.stack(ssims)
    mcs = torch.stack(mcs)

    # Simple normalize (not compliant with original definition)
    # TODO: remove support for normalize == True (kept for backward support)
    if normalize == "simple" or normalize == True:
        ssims = (ssims + 1) / 2
        mcs = (mcs + 1) / 2

    pow1 = mcs ** weights
    pow2 = ssims ** weights

    # From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
    output = torch.prod(pow1[:-1] * pow2[-1])
    return output


# Classes to re-use window
class SSIM(torch.nn.Module):
    def __init__(self, window_size=11, size_average=True, val_range=None):
        super(SSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.val_range = val_range

        # Assume 1 channel for SSIM
        self.channel = 1
        self.window = create_window(window_size)

    def forward(self, img1, img2):
        (_, channel, _, _) = img1.size()

        if channel == self.channel and self.window.dtype == img1.dtype:
            window = self.window
        else:
            window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
            self.window = window
            self.channel = channel

        return ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)

class MSSSIM(torch.nn.Module):
    def __init__(self, window_size=11, size_average=True, channel=3):
        super(MSSSIM, self).__init__()
        self.window_size = window_size
        self.size_average = size_average
        self.channel = channel

    def forward(self, img1, img2):
        # TODO: store window between calls if possible
        return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)

使用示例如:

import pytorch_msssim
import torch

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
m = pytorch_msssim.MSSSIM()

img1 = torch.rand(1, 1, 256, 256)
img2 = torch.rand(1, 1, 256, 256)

print(pytorch_msssim.msssim(img1, img2))
print(m(img1, img2))

SSIM 可作为损失函数,但要取负号,如 loss = 1 - SSIM.

实现如:

from pytorch_msssim import msssim, ssim
import torch
from torch import optim

from PIL import Image
from torchvision.transforms.functional import to_tensor
import numpy as np

# display = True requires matplotlib
display = True
metric = 'MSSSIM' # MSSSIM or SSIM
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def post_process(img):
    img = img.detach().cpu().numpy()
    img = np.transpose(np.squeeze(img, axis=0), (1, 2, 0))
    img = np.squeeze(img)     # works if grayscale
    return img

# Preprocessing
img1 = to_tensor(Image.open('einstein.png')).unsqueeze(0).type(torch.FloatTensor)

img2 = torch.rand(img1.size())
img2 = torch.nn.functional.sigmoid(img2)     # use sigmoid to clamp between [0, 1]

img1 = img1.to(device)
img2 = img2.to(device)

img1.requires_grad = False
img2.requires_grad = True

loss_func = msssim if metric == 'MSSSIM' else ssim

value = loss_func(img1, img2)
print("Initial %s: %.5f" % (metric, value.item()))

optimizer = optim.Adam([img2], lr=0.01)

# MSSSIM yields higher values for worse results, because noise is removed in scales with lower resolutions
threshold = 0.999 if metric == 'MSSSIM' else 0.9

while value < threshold:
    optimizer.zero_grad()
    msssim_out = -loss_func(img1, img2)
    value = -msssim_out.item()
    print('Current MS-SSIM = %.5f' % value)
    msssim_out.backward()
    optimizer.step()

if display:
    # Post processing
    img1np = post_process(img1)
    img2 = torch.nn.functional.sigmoid(img2)
    img2np = post_process(img2)
    import matplotlib.pyplot as plt
    cmap = 'gray' if len(img1np.shape) == 2 else None
    plt.subplot(1, 2, 1)
    plt.imshow(img1np, cmap=cmap)
    plt.title('Original')
    plt.subplot(1, 2, 2)
    plt.imshow(img2np, cmap=cmap)
    plt.title('Generated, {:s}: {:.3f}'.format(metric, value))
    plt.show()

5. 参考

[1] - 图片结构相似性算法:SSIM - 2019.11.24

[2] - 图像质量评价指标之 PSNR 和 SSIM - 2020.06.04 - 知乎

[3] - SSIM算法图像去重 - 2020.07.19

Last modification:February 20th, 2021 at 07:31 pm