1. data_download
"""
Download facades data.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
import tensorflow as tf
FLAGS = flags.FLAGS
flags.DEFINE_string('download_path', 'datasets', 'Download folder')
_URL = 'https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facades.tar.gz'
def _main(argv):
del argv
download_path = FLAGS.download_path
main(download_path)
def main(download_path):
path_to_zip = tf.keras.utils.get_file(
'facades.tar.gz', cache_subdir=download_path,
origin=_URL, extract=True)
path_to_folder = os.path.join(os.path.dirname(path_to_zip), 'facades/')
return path_to_folder
if __name__ == '__main__':
app.run(_main)
2. pix2pix
#!/usr/bin/python3
#!--*-- coding: utf-8 --*--
"""
Pix2pix.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
from absl import app
from absl import flags
import tensorflow as tf
FLAGS = flags.FLAGS
flags.DEFINE_integer('buffer_size', 400, 'Shuffle buffer size')
flags.DEFINE_integer('batch_size', 1, 'Batch Size')
flags.DEFINE_integer('epochs', 1, 'Number of epochs')
flags.DEFINE_string('path', None, 'Path to the data folder')
flags.DEFINE_boolean('enable_function', True, 'Enable Function?')
IMG_WIDTH = 256
IMG_HEIGHT = 256
AUTOTUNE = tf.data.experimental.AUTOTUNE #根据可用的CPU动态设置并行调用的数量
def load(image_file):
"""Loads the image and generates input and target image.
Args:
image_file: .jpeg file
Returns:
Input image, target image
"""
image = tf.io.read_file(image_file)
image = tf.image.decode_jpeg(image)
w = tf.shape(image)[1]
w = w // 2
real_image = image[:, :w, :]
input_image = image[:, w:, :]
input_image = tf.cast(input_image, tf.float32)
real_image = tf.cast(real_image, tf.float32)
return input_image, real_image
def resize(input_image, real_image, height, width):
input_image = tf.image.resize(input_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
real_image = tf.image.resize(real_image, [height, width],
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
return input_image, real_image
def random_crop(input_image, real_image):
stacked_image = tf.stack([input_image, real_image], axis=0)
cropped_image = tf.image.random_crop(
stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])
return cropped_image[0], cropped_image[1]
def normalize(input_image, real_image):
input_image = (input_image / 127.5) - 1
real_image = (real_image / 127.5) - 1
return input_image, real_image
@tf.function
def random_jitter(input_image, real_image):
"""
Random jittering.
Resizes to 286 x 286 and then randomly crops to IMG_HEIGHT x IMG_WIDTH.
Args:
input_image: Input Image
real_image: Real Image
Returns:
Input Image, real image
"""
# resizing to 286 x 286 x 3
input_image, real_image = resize(input_image, real_image, 286, 286)
# randomly cropping to 256 x 256 x 3
input_image, real_image = random_crop(input_image, real_image)
if tf.random.uniform(()) > 0.5:
# random mirroring
input_image = tf.image.flip_left_right(input_image)
real_image = tf.image.flip_left_right(real_image)
return input_image, real_image
def load_image_train(image_file):
input_image, real_image = load(image_file)
input_image, real_image = random_jitter(input_image, real_image)
input_image, real_image = normalize(input_image, real_image)
return input_image, real_image
def load_image_test(image_file):
input_image, real_image = load(image_file)
input_image, real_image = resize(input_image, real_image, IMG_HEIGHT, IMG_WIDTH)
input_image, real_image = normalize(input_image, real_image)
return input_image, real_image
def create_dataset(path_to_train_images, path_to_test_images, buffer_size,
batch_size):
"""Creates a tf.data Dataset.
Args:
path_to_train_images: Path to train images folder.
path_to_test_images: Path to test images folder.
buffer_size: Shuffle buffer size.
batch_size: Batch size
Returns:
train dataset, test dataset
"""
train_dataset = tf.data.Dataset.list_files(path_to_train_images)
train_dataset = train_dataset.shuffle(buffer_size)
train_dataset = train_dataset.map(
load_image_train, num_parallel_calls=AUTOTUNE)
train_dataset = train_dataset.batch(batch_size)
test_dataset = tf.data.Dataset.list_files(path_to_test_images)
test_dataset = test_dataset.map(
load_image_test, num_parallel_calls=AUTOTUNE)
test_dataset = test_dataset.batch(batch_size)
return train_dataset, test_dataset
class InstanceNormalization(tf.keras.layers.Layer):
"""
Instance Normalization Layer (https://arxiv.org/abs/1607.08022).
"""
def __init__(self, epsilon=1e-5):
super(InstanceNormalization, self).__init__()
self.epsilon = epsilon
def build(self, input_shape):
self.scale = self.add_weight(
name='scale',
shape=input_shape[-1:],
initializer=tf.random_normal_initializer(1., 0.02),
trainable=True)
self.offset = self.add_weight(
name='offset',
shape=input_shape[-1:],
initializer='zeros',
trainable=True)
def call(self, x):
mean, variance = tf.nn.moments(x, axes=[1, 2], keepdims=True)
inv = tf.math.rsqrt(variance + self.epsilon)
normalized = (x - mean) * inv
return self.scale * normalized + self.offset
def downsample(filters, size, norm_type='batchnorm', apply_norm=True):
"""
Downsamples an input.
Conv2D => Batchnorm => LeakyRelu
Args:
filters: number of filters
size: filter size
norm_type: Normalization type; either 'batchnorm' or 'instancenorm'.
apply_norm: If True, adds the batchnorm layer
Returns:
Downsample Sequential Model
"""
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
kernel_initializer=initializer, use_bias=False))
if apply_norm:
if norm_type.lower() == 'batchnorm':
result.add(tf.keras.layers.BatchNormalization())
elif norm_type.lower() == 'instancenorm':
result.add(InstanceNormalization())
result.add(tf.keras.layers.LeakyReLU())
return result
def upsample(filters, size, norm_type='batchnorm', apply_dropout=False):
"""
Upsamples an input.
Conv2DTranspose => Batchnorm => Dropout => Relu
Args:
filters: number of filters
size: filter size
norm_type: Normalization type; either 'batchnorm' or 'instancenorm'.
apply_dropout: If True, adds the dropout layer
Returns:
Upsample Sequential Model
"""
initializer = tf.random_normal_initializer(0., 0.02)
result = tf.keras.Sequential()
result.add(
tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
padding='same',
kernel_initializer=initializer,
use_bias=False))
if norm_type.lower() == 'batchnorm':
result.add(tf.keras.layers.BatchNormalization())
elif norm_type.lower() == 'instancenorm':
result.add(InstanceNormalization())
if apply_dropout:
result.add(tf.keras.layers.Dropout(0.5))
result.add(tf.keras.layers.ReLU())
return result
def unet_generator(output_channels, norm_type='batchnorm'):
"""
Modified u-net generator model (https://arxiv.org/abs/1611.07004).
Args:
output_channels: Output channels
norm_type: Type of normalization. Either 'batchnorm' or 'instancenorm'.
Returns:
Generator model
"""
down_stack = [
downsample(64, 4, norm_type, apply_norm=False), # (bs, 128, 128, 64)
downsample(128, 4, norm_type), # (bs, 64, 64, 128)
downsample(256, 4, norm_type), # (bs, 32, 32, 256)
downsample(512, 4, norm_type), # (bs, 16, 16, 512)
downsample(512, 4, norm_type), # (bs, 8, 8, 512)
downsample(512, 4, norm_type), # (bs, 4, 4, 512)
downsample(512, 4, norm_type), # (bs, 2, 2, 512)
downsample(512, 4, norm_type), # (bs, 1, 1, 512)
]
up_stack = [
upsample(512, 4, norm_type, apply_dropout=True), # (bs, 2, 2, 1024)
upsample(512, 4, norm_type, apply_dropout=True), # (bs, 4, 4, 1024)
upsample(512, 4, norm_type, apply_dropout=True), # (bs, 8, 8, 1024)
upsample(512, 4, norm_type), # (bs, 16, 16, 1024)
upsample(256, 4, norm_type), # (bs, 32, 32, 512)
upsample(128, 4, norm_type), # (bs, 64, 64, 256)
upsample(64, 4, norm_type), # (bs, 128, 128, 128)
]
initializer = tf.random_normal_initializer(0., 0.02)
last = tf.keras.layers.Conv2DTranspose(
output_channels, 4, strides=2,
padding='same', kernel_initializer=initializer,
activation='tanh') # (bs, 256, 256, 3)
concat = tf.keras.layers.Concatenate()
inputs = tf.keras.layers.Input(shape=[None, None, 3])
x = inputs
# Downsampling through the model
skips = []
for down in down_stack:
x = down(x)
skips.append(x)
skips = reversed(skips[:-1])
# Upsampling and establishing the skip connections
for up, skip in zip(up_stack, skips):
x = up(x)
x = concat([x, skip])
x = last(x)
return tf.keras.Model(inputs=inputs, outputs=x)
def discriminator(norm_type='batchnorm', target=True):
"""
PatchGan discriminator model (https://arxiv.org/abs/1611.07004).
Args:
norm_type: Type of normalization. Either 'batchnorm' or 'instancenorm'.
target: Bool, indicating whether target image is an input or not.
Returns:
Discriminator model
"""
initializer = tf.random_normal_initializer(0., 0.02)
inp = tf.keras.layers.Input(shape=[None, None, 3], name='input_image')
x = inp
if target:
tar = tf.keras.layers.Input(shape=[None, None, 3], name='target_image')
x = tf.keras.layers.concatenate([inp, tar]) # (bs, 256, 256, channels*2)
down1 = downsample(64, 4, norm_type, False)(x) # (bs, 128, 128, 64)
down2 = downsample(128, 4, norm_type)(down1) # (bs, 64, 64, 128)
down3 = downsample(256, 4, norm_type)(down2) # (bs, 32, 32, 256)
zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (bs, 34, 34, 256)
conv = tf.keras.layers.Conv2D(
512, 4, strides=1, kernel_initializer=initializer,
use_bias=False)(zero_pad1) # (bs, 31, 31, 512)
if norm_type.lower() == 'batchnorm':
norm1 = tf.keras.layers.BatchNormalization()(conv)
elif norm_type.lower() == 'instancenorm':
norm1 = InstanceNormalization()(conv)
leaky_relu = tf.keras.layers.LeakyReLU()(norm1)
zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (bs, 33, 33, 512)
last = tf.keras.layers.Conv2D(
1, 4, strides=1,
kernel_initializer=initializer)(zero_pad2) # (bs, 30, 30, 1)
if target:
return tf.keras.Model(inputs=[inp, tar], outputs=last)
else:
return tf.keras.Model(inputs=inp, outputs=last)
def get_checkpoint_prefix():
checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt')
return checkpoint_prefix
class Pix2pix(object):
"""
Pix2pix class.
Args:
epochs: Number of epochs.
enable_function: If true, train step is decorated with tf.function.
buffer_size: Shuffle buffer size..
batch_size: Batch size.
"""
def __init__(self, epochs, enable_function):
self.epochs = epochs
self.enable_function = enable_function
self.lambda_value = 100
self.loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)
self.generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
self.discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
self.generator = unet_generator(output_channels=3)
self.discriminator = discriminator()
self.checkpoint = tf.train.Checkpoint(
generator_optimizer=self.generator_optimizer,
discriminator_optimizer=self.discriminator_optimizer,
generator=self.generator,
discriminator=self.discriminator)
def discriminator_loss(self, disc_real_output, disc_generated_output):
real_loss = self.loss_object(tf.ones_like(disc_real_output), disc_real_output)
generated_loss = self.loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)
total_disc_loss = real_loss + generated_loss
return total_disc_loss
def generator_loss(self, disc_generated_output, gen_output, target):
gan_loss = self.loss_object(tf.ones_like(disc_generated_output), disc_generated_output)
# mean absolute error
l1_loss = tf.reduce_mean(tf.abs(target - gen_output))
total_gen_loss = gan_loss + (self.lambda_value * l1_loss)
return total_gen_loss
def train_step(self, input_image, target_image):
"""
One train step over the generator and discriminator model.
Args:
input_image: Input Image.
target_image: Target image.
Returns:
generator loss, discriminator loss.
"""
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
gen_output = self.generator(input_image, training=True)
disc_real_output = self.discriminator(
[input_image, target_image], training=True)
disc_generated_output = self.discriminator(
[input_image, gen_output], training=True)
gen_loss = self.generator_loss(
disc_generated_output, gen_output, target_image)
disc_loss = self.discriminator_loss(
disc_real_output, disc_generated_output)
generator_gradients = gen_tape.gradient(
gen_loss, self.generator.trainable_variables)
discriminator_gradients = disc_tape.gradient(
disc_loss, self.discriminator.trainable_variables)
self.generator_optimizer.apply_gradients(zip(
generator_gradients, self.generator.trainable_variables))
self.discriminator_optimizer.apply_gradients(zip(
discriminator_gradients, self.discriminator.trainable_variables))
return gen_loss, disc_loss
def train(self, dataset, checkpoint_pr):
"""
Train the GAN for x number of epochs.
Args:
dataset: train dataset.
checkpoint_pr: prefix in which the checkpoints are stored.
Returns:
Time for each epoch.
"""
time_list = []
if self.enable_function:
self.train_step = tf.function(self.train_step)
for epoch in range(self.epochs):
start_time = time.time()
for input_image, target_image in dataset:
gen_loss, disc_loss = self.train_step(input_image, target_image)
wall_time_sec = time.time() - start_time
time_list.append(wall_time_sec)
# saving (checkpoint) the model every 20 epochs
if (epoch + 1) % 20 == 0:
self.checkpoint.save(file_prefix=checkpoint_pr)
template = 'Epoch {}, Generator loss {}, Discriminator Loss {}'
print (template.format(epoch, gen_loss, disc_loss))
return time_list
def run_main(argv):
del argv
kwargs = {'epochs': FLAGS.epochs,
'enable_function': FLAGS.enable_function,
'path': FLAGS.path,
'buffer_size': FLAGS.buffer_size,
'batch_size': FLAGS.batch_size}
main(**kwargs)
def main(epochs, enable_function, path, buffer_size, batch_size):
path_to_folder = path
pix2pix_object = Pix2pix(epochs, enable_function)
train_dataset, _ = create_dataset(
os.path.join(path_to_folder, 'train/*.jpg'),
os.path.join(path_to_folder, 'test/*.jpg'),
buffer_size, batch_size)
checkpoint_pr = get_checkpoint_prefix()
print ('Training ...')
return pix2pix_object.train(train_dataset, checkpoint_pr)
if __name__ == '__main__':
app.run(run_main)
3. pix2pix_test
"""
Tests for Pix2Pix.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
import tensorflow as tf
from pix2pix import data_download
from pix2pix import pix2pix
FLAGS = flags.FLAGS
class Pix2PixTest(tf.test.TestCase):
def test_one_step_with_function(self):
epochs = 1
batch_size = 1
enable_function = True
input_image = tf.random.uniform((256, 256, 3))
target_image = tf.random.uniform((256, 256, 3))
train_dataset = tf.data.Dataset.from_tensors(
(input_image, target_image)).map(pix2pix.random_jitter).batch(batch_size)
checkpoint_pr = pix2pix.get_checkpoint_prefix()
pix2pix_obj = pix2pix.Pix2pix(epochs, enable_function)
pix2pix_obj.train(train_dataset, checkpoint_pr)
def test_one_step_without_function(self):
epochs = 1
batch_size = 1
enable_function = False
input_image = tf.random.uniform((256, 256, 3))
target_image = tf.random.uniform((256, 256, 3))
train_dataset = tf.data.Dataset.from_tensors(
(input_image, target_image)).map(pix2pix.random_jitter).batch(batch_size)
pix2pix_obj = pix2pix.Pix2pix(epochs, enable_function)
checkpoint_pr = pix2pix.get_checkpoint_prefix()
pix2pix_obj.train(train_dataset, checkpoint_pr)
class Pix2PixBenchmark(tf.test.Benchmark):
def __init__(self, output_dir=None, **kwargs):
self.output_dir = output_dir
def benchmark_with_function(self):
path = data_download.main("datasets")
kwargs = {"epochs": 6,
"enable_function": True,
"path": path,
"buffer_size": 400,
"batch_size": 1}
self._run_and_report_benchmark(**kwargs)
def benchmark_without_function(self):
path = data_download.main("datasets")
kwargs = {"epochs": 6,
"enable_function": False,
"path": path,
"buffer_size": 400,
"batch_size": 1}
self._run_and_report_benchmark(**kwargs)
def _run_and_report_benchmark(self, **kwargs):
time_list = pix2pix.main(**kwargs)
# 1st epoch is the warmup epoch hence skipping it for calculating time.
self.report_benchmark(wall_time=tf.reduce_mean(time_list[1:]))
if __name__ == "__main__":
tf.test.main()