Github 项目 - Netron

作者:lutzroeder

官网:https://www.lutzroeder.com/ai/

image

Netron 是一个强大的神经网络、深度学习和机器学习模型可视化工具. 其支持:

  • ONNX (.onnx, .pb, .pbtxt)
  • Keras (.h5, .keras)
  • CoreML (.mlmodel)
  • Caffe2 (predict_net.pb, predict_net.pbtxt)
  • MXNet (.model, -symbol.json)
  • TensorFlow Lite (.tflite)

Netron 已经测试支持的深度学习框架有:

  • Caffe (.caffemodel, .prototxt)
  • PyTorch (.pth)
  • Torch (.t7)
  • CNTK (.model, .cntk)
  • PaddlePaddle(__model__)
  • Darknet (.cfg)
  • scikit-learn (.pkl)
  • TensorFlow.js (model.json, .pb)
  • TensorFlow (.pb, .meta, .pbtxt)

可视化效果真心赞!

image

1. Netron 安装

macOS: Download the .dmg file or run brew cask install netron

Linux: Download the .AppImage or .deb file.

Windows: Download the .exe installer.

Browser: Start the browser version.

Python Server: Run pip install netron and netron -b [MODEL_FILE]. In Python run import netron and netron.start('model.onnx').

2. 下载开源模型

ONNX Models: Inception v1, Inception v2, ResNet-50, SqueezeNet

Keras Models: resnet, tiny-yolo-voc

CoreML Models: MobileNet, Places205-GoogLeNet, Inception v3

TensorFlow Lite Models: Smart Reply 1.0 , Inception v3 2016

Caffe Models: BVLC AlexNet, BVLC CaffeNet, BVLC GoogleNet

Caffe2 Models: BVLC GoogleNet, Inception v2

MXNet Models: CaffeNet, SqueezeNet v1.1

TensorFlow models: Inception v3, Inception v4, Inception 5h

3. 网络可视化

在客户端或者网页版中上传对应的模型结构文件,即可输出可视化结果.

例如,yolov3-tiny Darknet 模型结构可视化:

image

Last modification:January 17th, 2019 at 04:39 pm