https://github.com/open-mmlab/mmcv/blob/master/mmcv/utils/progressbar.py

1. 计时器 Timer

timer.py:

from time import time class TimerError(Exception): def __init__(self, message): self.message = message super(TimerError, self).__init__(message) class Timer: def __init__(self, start=True, print_tmpl=None): self._is_running = False self.print_tmpl = print_tmpl if print_tmpl else '{:.3f}' if start: self.start() @property def is_running(self): """bool: indicate whether the timer is running""" return self._is_running def __enter__(self): self.start() return self def __exit__(self, type, value, traceback): print(self.print_tmpl.format(self.since_last_check())) self._is_running = False def start(self): """Start the timer.""" if not self._is_running: self._t_start = time() self._is_running = True self._t_last = time() def since_start(self): """Total time since the timer is started. Returns: float: Time in seconds. """ if not self._is_running: raise TimerError('timer is not running') self._t_last = time() return self._t_last - self._t_start def since_last_check(self): """Time since the last checking. Either :func:`since_start` or :func:`since_last_check` is a checking operation. Returns: float: Time in seconds. """ if not self._is_running: raise TimerError('timer is not running') dur = time() - self._t_last self._t_last = time() return dur

示例,如:

from .timer import Timer timer_ins = Timer(start=True) print(timer_ins.since_start()) print(timer_ins.since_last_check()) print(timer_ins.since_start())

2. 进度条 ProgressBar

#!/usr/bin/python3 #!--*-- coding: utf-8 --*-- import sys from shutil import get_terminal_size from .timer import Timer class ProgressBar: """ A progress bar which can print the progress. """ def __init__(self, task_num=0, bar_width=50, start=True, file=sys.stdout): self.task_num = task_num self.bar_width = bar_width self.completed = 0 self.file = file if start: self.start() @property def terminal_width(self): width, _ = get_terminal_size() return width def start(self): if self.task_num > 0: self.file.write(f'[{" " * self.bar_width}] 0/{self.task_num}, ' 'elapsed: 0s, ETA:') else: self.file.write('completed: 0, elapsed: 0s') self.file.flush() self.timer = Timer() def update(self, num_tasks=1): assert num_tasks > 0 self.completed += num_tasks elapsed = self.timer.since_start() if elapsed > 0: fps = self.completed / elapsed else: fps = float('inf') if self.task_num > 0: percentage = self.completed / float(self.task_num) eta = int(elapsed * (1 - percentage) / percentage + 0.5) msg = f'\r[{{}}] {self.completed}/{self.task_num}, ' \ f'{fps:.1f} task/s, elapsed: {int(elapsed + 0.5)}s, ' \ f'ETA: {eta:5}s' bar_width = min(self.bar_width, int(self.terminal_width - len(msg)) + 2, int(self.terminal_width * 0.6)) bar_width = max(2, bar_width) mark_width = int(bar_width * percentage) bar_chars = '>' * mark_width + ' ' * (bar_width - mark_width) self.file.write(msg.format(bar_chars)) else: self.file.write( f'completed: {self.completed}, elapsed: {int(elapsed + 0.5)}s,' f' {fps:.1f} tasks/s') self.file.flush()

3. 任务执行进度条

from collections.abc import Iterable def track_progress(func, tasks, bar_width=50, file=sys.stdout, **kwargs): """ Track the progress of tasks execution with a progress bar. Tasks are done with a simple for-loop. Args: func (callable): The function to be applied to each task. tasks (list or tuple[Iterable, int]): A list of tasks or (tasks, total num). bar_width (int): Width of progress bar. Returns: list: The task results. """ if isinstance(tasks, tuple): assert len(tasks) == 2 assert isinstance(tasks[0], Iterable) assert isinstance(tasks[1], int) task_num = tasks[1] tasks = tasks[0] elif isinstance(tasks, Iterable): task_num = len(tasks) else: raise TypeError( '"tasks" must be an iterable object or a (iterator, int) tuple') prog_bar = ProgressBar(task_num, bar_width, file=file) results = [] for task in tasks: results.append(func(task, **kwargs)) prog_bar.update() prog_bar.file.write('\n') return results

4. 多进程任务执行进度条

from collections.abc import Iterable from multiprocessing import Pool def init_pool(process_num, initializer=None, initargs=None): if initializer is None: return Pool(process_num) elif initargs is None: return Pool(process_num, initializer) else: if not isinstance(initargs, tuple): raise TypeError('"initargs" must be a tuple') return Pool(process_num, initializer, initargs) def track_parallel_progress(func, tasks, nproc, initializer=None, initargs=None, bar_width=50, chunksize=1, skip_first=False, keep_order=True, file=sys.stdout): """ Track the progress of parallel task execution with a progress bar. The built-in :mod:`multiprocessing` module is used for process pools and tasks are done with :func:`Pool.map` or :func:`Pool.imap_unordered`. Args: func (callable): The function to be applied to each task. tasks (list or tuple[Iterable, int]): A list of tasks or (tasks, total num). nproc (int): Process (worker) number. initializer (None or callable): Refer to :class:`multiprocessing.Pool` for details. initargs (None or tuple): Refer to :class:`multiprocessing.Pool` for details. chunksize (int): Refer to :class:`multiprocessing.Pool` for details. bar_width (int): Width of progress bar. skip_first (bool): Whether to skip the first sample for each worker when estimating fps, since the initialization step may takes longer. keep_order (bool): If True, :func:`Pool.imap` is used, otherwise :func:`Pool.imap_unordered` is used. Returns: list: The task results. """ if isinstance(tasks, tuple): assert len(tasks) == 2 assert isinstance(tasks[0], Iterable) assert isinstance(tasks[1], int) task_num = tasks[1] tasks = tasks[0] elif isinstance(tasks, Iterable): task_num = len(tasks) else: raise TypeError( '"tasks" must be an iterable object or a (iterator, int) tuple') pool = init_pool(nproc, initializer, initargs) start = not skip_first task_num -= nproc * chunksize * int(skip_first) prog_bar = ProgressBar(task_num, bar_width, start, file=file) results = [] if keep_order: gen = pool.imap(func, tasks, chunksize) else: gen = pool.imap_unordered(func, tasks, chunksize) for result in gen: results.append(result) if skip_first: if len(results) < nproc * chunksize: continue elif len(results) == nproc * chunksize: prog_bar.start() continue prog_bar.update() prog_bar.file.write('\n') pool.close() pool.join() return results
Last modification:February 22nd, 2022 at 02:05 pm