Keras 中 keras.summary() 即可很好的将模型结构可视化,但 Pytorch 暂还没有提供网络模型可视化的工具.
Github 中的 pytorchviz
可以很不错的画出 Pytorch 模型网络结构.
create visualizations of PyTorch execution graphs and traces.
- 安装:
sudo pip install graphviz
# 或
sudo pip install git+https://github.com/szagoruyko/pytorchviz
模型可视化函数 - make_dot()
https://github.com/szagoruyko/pytorchviz/blob/master/torchviz/dot.py
import torch
from torch.autograd import Variable
from graphviz import Digraph
def make_dot(var, params=None):
"""
画出 PyTorch 自动梯度图 autograd graph 的 Graphviz 表示.
蓝色节点表示有梯度计算的变量Variables;
橙色节点表示用于 torch.autograd.Function 中的 backward 的张量 Tensors.
Args:
var: output Variable
params: dict of (name, Variable) to add names to node that
require grad (TODO: make optional)
"""
if params is not None:
assert all(isinstance(p, Variable) for p in params.values())
param_map = {id(v): k for k, v in params.items()}
node_attr = dict(style='filled', shape='box', align='left',
fontsize='12', ranksep='0.1', height='0.2')
dot = Digraph(node_attr=node_attr, graph_attr=dict(size="12,12"))
seen = set()
def size_to_str(size):
return '(' + (', ').join(['%d' % v for v in size]) + ')'
output_nodes = (var.grad_fn,) if not isinstance(var, tuple) else tuple(v.grad_fn for v in var)
def add_nodes(var):
if var not in seen:
if torch.is_tensor(var):
# note: this used to show .saved_tensors in pytorch0.2, but stopped
# working as it was moved to ATen and Variable-Tensor merged
dot.node(str(id(var)), size_to_str(var.size()), fillcolor='orange')
elif hasattr(var, 'variable'):
u = var.variable
name = param_map[id(u)] if params is not None else ''
node_name = '%s\n %s' % (name, size_to_str(u.size()))
dot.node(str(id(var)), node_name, fillcolor='lightblue')
elif var in output_nodes:
dot.node(str(id(var)), str(type(var).__name__), fillcolor='darkolivegreen1')
else:
dot.node(str(id(var)), str(type(var).__name__))
seen.add(var)
if hasattr(var, 'next_functions'):
for u in var.next_functions:
if u[0] is not None:
dot.edge(str(id(u[0])), str(id(var)))
add_nodes(u[0])
if hasattr(var, 'saved_tensors'):
for t in var.saved_tensors:
dot.edge(str(id(t)), str(id(var)))
add_nodes(t)
# 多输出场景 multiple outputs
if isinstance(var, tuple):
for v in var:
add_nodes(v.grad_fn)
else:
add_nodes(var.grad_fn)
resize_graph(dot)
return dot
Demo - MLP
https://github.com/szagoruyko/pytorchviz/blob/master/examples.ipynb
python2.7
import torch
from torch import nn
from torchviz import make_dot
model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))
x = torch.randn(1,8)
vis_graph = make_dot(model(x), params=dict(model.named_parameters()))
vise_graph.view()
Demo - AlexNet
import torch
from torch import nn
from torchviz import make_dot
from torchvision.models import AlexNet
model = AlexNet()
x = torch.randn(1, 3, 227, 227).requires_grad_(True)
y = model(x)
vis_graph = make_dot(y, params=dict(list(model.named_parameters()) + [('x', x)]))
vise_graph.view()
模型参数打印
import torch
from torch import nn
from torchviz import make_dot
from torchvision.models import AlexNet
model = AlexNet()
x = torch.randn(1, 3, 227, 227).requires_grad_(True)
y = model(x)
params = list(model.parameters())
k = 0
for i in params:
l = 1
print("该层的结构:" + str(list(i.size())))
for j in i.size():
l *= j
print("该层参数和:" + str(l))
k = k + l
print("总参数数量和:" + str(k))
输出如下:
该层的结构:[64, 3, 11, 11]
该层参数和:23232
该层的结构:[64]
该层参数和:64
该层的结构:[192, 64, 5, 5]
该层参数和:307200
该层的结构:[192]
该层参数和:192
该层的结构:[384, 192, 3, 3]
该层参数和:663552
该层的结构:[384]
该层参数和:384
该层的结构:[256, 384, 3, 3]
该层参数和:884736
该层的结构:[256]
该层参数和:256
该层的结构:[256, 256, 3, 3]
该层参数和:589824
该层的结构:[256]
该层参数和:256
该层的结构:[4096, 9216]
该层参数和:37748736
该层的结构:[4096]
该层参数和:4096
该层的结构:[4096, 4096]
该层参数和:16777216
该层的结构:[4096]
该层参数和:4096
该层的结构:[1000, 4096]
该层参数和:4096000
该层的结构:[1000]
该层参数和:1000
总参数数量和:1000