语义分割中,SegAccuracyLayer 用于训练过程中 Accuracy 计算.

<h2>1. caffe.proto 参数定义</h2>

optional SegAccuracyParameter seg_accuracy_param = 160;
message SegAccuracyParameter {
  enum AccuracyMetric {
    PixelAccuracy = 0;    # 像素精度
    ClassAccuracy = 1;    # 类别精度
    PixelIOU = 2;    # 像素 IoU
  }
  optional AccuracyMetric metric = 1 [default = PixelAccuracy]; # 默认是像素精度
  // will ignore pixels with this value when computing accuracy
  repeated int32 ignore_label = 2;
  optional bool reset = 3 [default = true];
}

参数:
两个输入 Blob:
输入 bottom[0] - NxCxHxW, 预测值 ${ x }$ Blobs,值在 [-inf, inf], 表示 K=CHW 个类别中每一个的预测分数.
每一个值 ${ x_n } $ 都会被预测一个类别标签 ${ \hat{l}_n }$, 具体计算为: ${ \hat{l}_n = \arg \max \limits_k x_{nk} }$
输入 bottom[1] - Nx1x1x1, 真实值 ${ l }$$ Blobs, 整数值 Blob,${ l_n \in [0, 1, 2, ..., K- 1] }$, 表示了每一个像素的正确标签label.

一个输出 Blob:
输出 top[0] - 1x1x1x1, 计算的精度:${ \frac{1}{N} \sum\limits_{n=1}^N \delta ( \hat{l}_n = l_n) }$, 其中, 如果 condition=True, 即条件成立, 则 ${ \delta{condition} = 1 } $, 否则 ${ \delta{condition} = 0 }$

<h2>2. seg_accuracy_layer.hpp</h2>

#ifndef CAFFE_SEG_ACCURACY_LAYER_HPP_
#define CAFFE_SEG_ACCURACY_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/layer.hpp"
#include "caffe/util/confusion_matrix.hpp"    // 混淆矩阵
#include "caffe/proto/caffe.pb.h"

namespace caffe {

template <typename Dtype>
class SegAccuracyLayer : public Layer<Dtype> {
 public:
  explicit SegAccuracyLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline const char* type() const { return "SegAccuracy"; }

  virtual inline int ExactNumBottomBlobs() const { return 2; }
  virtual inline int ExactNumTopBlobs() const { return 1; }

 protected:
  /**
   * @param bottom input Blob vector (length 2)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the predictions @f$ x @f$, a Blob with values in
   *      @f$ [-\infty, +\infty] @f$ indicating the predicted score for each of
   *      the @f$ K = CHW @f$ classes. Each @f$ x_n @f$ is mapped to a predicted
   *      label @f$ \hat{l}_n @f$ given by its maximal index:
   *      @f$ \hat{l}_n = \arg\max\limits_k x_{nk} @f$
   *   -# @f$ (N \times 1 \times 1 \times 1) @f$
   *      the labels @f$ l @f$, an integer-valued Blob with values
   *      @f$ l_n \in [0, 1, 2, ..., K - 1] @f$
   *      indicating the correct class label among the @f$ K @f$ classes
   * @param top output Blob vector (length 1)
   *   -# @f$ (1 \times 1 \times 1 \times 1) @f$
   *      the computed accuracy: @f$
   *        frac{1}{N} sumlimits_{n=1}^N delta{ hat{l}_n = l_n }
   *      @f$, where @f$
   *      delta{mathrm{condition}} = left{
   *         begin{array}{lr}
   *            1 & mbox{if condition} \
   *            0 & mbox{otherwise}
   *         end{array} right.
   *      @f$
   */
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  /// @brief Not implemented -- AccuracyLayer cannot be used as a loss.
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
    for (int i = 0; i < propagate_down.size(); ++i) {
      if (propagate_down[i]) { NOT_IMPLEMENTED; }
    }
  }

  ConfusionMatrix confusion_matrix_;

  // set of ignore labels
  std::set<int> ignore_label_;
};

}  // namespace caffe

#endif  // CAFFE_SEG_ACCURACY_HPP_

<h2>3. seg_accuracy_layer.cpp</h2>

#include <algorithm>
#include <functional>
#include <utility>
#include <vector>

#include "caffe/layer.hpp"
#include "caffe/util/io.hpp"
#include "caffe/util/math_functions.hpp"
#include "caffe/layers/seg_accuracy_layer.hpp"


namespace caffe {

template <typename Dtype>
void SegAccuracyLayer<Dtype>::LayerSetUp(
  const vector<Blob<Dtype>>& bottom, const vector<Blob<Dtype>>& top) {
  confusion_matrix_.clear(); //清空混淆矩阵
  confusion_matrix_.resize(bottom[0]->channels());
  SegAccuracyParameter seg_accuracy_param = this->layer_param_.seg_accuracy_param();
  for (int c = 0; c < seg_accuracy_param.ignore_label_size(); ++c){
    ignore_label_.insert(seg_accuracy_param.ignore_label(c));  //忽略labels
  }
}

template <typename Dtype>
void SegAccuracyLayer<Dtype>::Reshape(
  const vector<Blob<Dtype>>& bottom, const vector<Blob<Dtype>>& top) {
  CHECK_LE(1, bottom[0]->channels())
      << "top_k must be less than or equal to the number of channels (classes).";
      // top_k 的值必须小于等于 channels数(类别数)
  CHECK_EQ(bottom[0]->num(), bottom[1]->num())
    << "The data and label should have the same number.";
    // data 和 label 需数目相同
  CHECK_EQ(bottom[1]->channels(), 1)
    << "The label should have one channel.";
    // label需是 1D 形式
  CHECK_EQ(bottom[0]->height(), bottom[1]->height())
    << "The data should have the same height as label.";
    // data 与 label 需有相同的 height
  CHECK_EQ(bottom[0]->width(), bottom[1]->width())
    << "The data should have the same width as label.";
    // data 与 label 需有相同的 width
  //confusion_matrix_.clear(); //清空混淆矩阵
  top[0]->Reshape(1, 1, 1, 3);
}

template <typename Dtype>
void SegAccuracyLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  const Dtype* bottom_label = bottom[1]->cpu_data();
  int num = bottom[0]->num();
  int channels = bottom[0]->channels();
  int height = bottom[0]->height();
  int width = bottom[0]->width();

  int data_index, label_index;

  int top_k = 1;  // only support for top_k = 1

  // remove old predictions if reset() flag is true
  // 如果 reset() == true,移除旧的预测
  if (this->layer_param_.seg_accuracy_param().reset()) {
    confusion_matrix_.clear();
  }

  for (int i = 0; i < num; ++i) {
    for (int h = 0; h < height; ++h) {
      for (int w = 0; w < width; ++w) {
    // Top-k accuracy
    std::vector<std::pair<Dtype, int> > bottom_data_vector;

    for (int c = 0; c < channels; ++c) {
      data_index = (c  height + h)  width + w;
      bottom_data_vector.push_back(std::make_pair(bottom_data[data_index], c));
    }

    std::partial_sort(
      bottom_data_vector.begin(), bottom_data_vector.begin() + top_k,
      bottom_data_vector.end(), std::greater<std::pair<Dtype, int> >());

    // check if true label is in top k predictions
    label_index = h * width + w;
    const int gt_label = static_cast<int>(bottom_label[label_index]);

    if (ignore_label_.count(gt_label) != 0) {
      // ignore the pixel with this gt_label
      continue;
    } else if (gt_label >= 0 && gt_label < channels) {
      // current position is not "255", indicating ambiguous position
      confusion_matrix_.accumulate(gt_label, bottom_data_vector[0].second);
    } else {
      LOG(FATAL) << "Unexpected label " << gt_label << ". num: " << i 
              << ". row: " << h << ". col: " << w;
      }
      }
    }
    bottom_data  += bottom[0]->offset(1);
    bottom_label += bottom[1]->offset(1);
  }

  /* for debug
  LOG(INFO) << "confusion matrix info:" << confusion_matrix_.numRows() << "," << confusion_matrix_.numCols();
  confusion_matrix_.printCounts();
  */

  // we report all the resuls
  top[0]->mutable_cpu_data()[0] = (Dtype)confusion_matrix_.accuracy();  // accuracy 精度
  top[0]->mutable_cpu_data()[1] = (Dtype)confusion_matrix_.avgRecall(false);  // 平均 Recall
  top[0]->mutable_cpu_data()[2] = (Dtype)confusion_matrix_.avgJaccard();  // 平均 Jaccard
}

INSTANTIATE_CLASS(SegAccuracyLayer);
REGISTER_LAYER_CLASS(SegAccuracy);

}  // namespace caffe

Last modification:October 10th, 2018 at 01:35 am