Github 项目 - Netron
作者:lutzroeder

Netron 是一个强大的神经网络、深度学习和机器学习模型可视化工具. 其支持:
- ONNX (
.onnx,.pb,.pbtxt) - Keras (
.h5,.keras) - CoreML (
.mlmodel) - Caffe2 (
predict_net.pb,predict_net.pbtxt) - MXNet (
.model,-symbol.json) - TensorFlow Lite (
.tflite)
Netron 已经测试支持的深度学习框架有:
- Caffe (
.caffemodel,.prototxt) - PyTorch (
.pth) - Torch (
.t7) - CNTK (
.model,.cntk) - PaddlePaddle(
__model__) - Darknet (
.cfg) - scikit-learn (
.pkl) - TensorFlow.js (
model.json,.pb) - TensorFlow (
.pb,.meta,.pbtxt)
可视化效果真心赞!

1. Netron 安装
macOS: Download the .dmg file or run brew cask install netron
Linux: Download the .AppImage or .deb file.
Windows: Download the .exe installer.
Browser: Start the browser version.
Python Server: Run pip install netron and netron -b [MODEL_FILE]. In Python run import netron and netron.start('model.onnx').
2. 下载开源模型
ONNX Models: Inception v1, Inception v2, ResNet-50, SqueezeNet
Keras Models: resnet, tiny-yolo-voc
CoreML Models: MobileNet, Places205-GoogLeNet, Inception v3
TensorFlow Lite Models: Smart Reply 1.0 , Inception v3 2016
Caffe Models: BVLC AlexNet, BVLC CaffeNet, BVLC GoogleNet
Caffe2 Models: BVLC GoogleNet, Inception v2
MXNet Models: CaffeNet, SqueezeNet v1.1
TensorFlow models: Inception v3, Inception v4, Inception 5h
3. 网络可视化
在客户端或者网页版中上传对应的模型结构文件,即可输出可视化结果.
例如,yolov3-tiny Darknet 模型结构可视化:
