## 1. Semantic Segmentation 1. FarSee-Net: Real-Time Semantic Segmentation by Efficient Multi-scale Context Aggregation and Feature Space Super-resolution - 2020 - SenseTime [](https://128.84.21.199/pdf/2003.03913.pdf) 2. RGPNet: A Real-Time General Purpose Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1912.01394.pdf) 3. Investigations on the inference optimization techniques and their impact on multiple hardware platforms for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1911.12993.pdf) 4. Document Structure Extraction for Forms using Very High Resolution Semantic Segmentation - 2019 - Adobe 文档结构提取 [](https://arxiv.org/pdf/1911.12170.pdf) 5. Class-Conditional Domain Adaptation on Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1911.11981.pdf) 6. On Symbiosis of Attribute Prediction and Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1911.11612.pdf) 7. Differentiable Meta-learning Model for Few-shot Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1911.10371.pdf) 8. Reliability Does Matter: An End-to-End Weakly Supervised Semantic Segmentation Approach - 2019 [](https://arxiv.org/pdf/1911.08039.pdf) 9. Real-Time Semantic Segmentation via Multiply Spatial Fusion Network - 2019 旷视 [](https://arxiv.org/pdf/1911.07217.pdf) 10. Improving Semantic Segmentation of Aerial Images Using Patch-based Attention - 2019 [](https://arxiv.org/pdf/1911.08877.pdf) 11. Location-aware Upsampling for Semantic Segmentation - 2019 - CAS [](https://arxiv.org/pdf/1911.05250.pdf) [](https://github.com/HolmesShuan/Location-aware-Upsampling-for-Semantic-Segmentation) 12. Knowledge Distillation for Incremental Learning in Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1911.03462.pdf) 13. Eye Semantic Segmentation with A Lightweight Model - 2019 眼部分割 [](https://arxiv.org/pdf/1911.01049.pdf) 14. Distilling Pixel-Wise Feature Similarities for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1910.14226.pdf) 15. PT-ResNet: Perspective Transformation-Based Residual Network for Semantic Road Image Segmentation - 2019 道路分割 [](https://arxiv.org/pdf/1910.13055.pdf) 16. Multi-source Domain Adaptation for Semantic Segmentation - 2019 - NeurIPS [](https://arxiv.org/pdf/1910.12181.pdf) [](https://github.com/Luodian/MADAN) 17. Region Mutual Information Loss for Semantic Segmentation - 2019 - NeurIPS [](https://arxiv.org/pdf/1910.12037.pdf) [](https://github.com/ZJULearning/RMI) 18. Correlation Maximized Structural Similarity Loss for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1910.08711.pdf) 19. Deep Semantic Segmentation of Natural and Medical Images: A Review - 2019 医学图像分割综述 [](https://arxiv.org/pdf/1910.07655.pdf) 20. CNN-based Semantic Segmentation using Level Set Loss - 2019 KAIST [](https://arxiv.org/pdf/1910.00950.pdf) 21. Domain Adaptation for Semantic Segmentation with Maximum Squares Loss - 2019 [](https://github.com/ZJULearning/MaxSquareLoss) [](https://github.com/ZJULearning/MaxSquareLoss) 22. Distributed Iterative Gating Networks for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1909.12996.pdf) 23. Adaptive Class Weight based Dual Focal Loss for Improved Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1909.11932.pdf) 24. Object-Contextual Representations for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1909.11065.pdf) 25. ACFNet: Attentional Class Feature Network for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1909.09408.pdf) 26. Extremely Weak Supervised Image-to-Image Translation for Semantic Segmentation -2019 [](https://arxiv.org/pdf/1909.08542.pdf) 27. Feature Pyramid Encoding Network for Real-time Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1909.08599.pdf) 28. Graph-guided Architecture Search for Real-time Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1909.06793.pdf) 29. Dual Graph Convolutional Network for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1909.06121.pdf) 30. Squeeze-and-Attention Networks for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1909.03402.pdf) 31. Semantic Segmentation of Panoramic Images Using a Synthetic Dataset - 2019 [](https://arxiv.org/pdf/1909.00532.pdf) [](https://github.com/Francis515/SYNTHIA-PANO) 32. See More Than Once – Kernel-Sharing Atrous Convolution for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1908.09443.pdf) 33. Feedbackward Decoding for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1908.08584.pdf) 34. Asymmetric Non-local Neural Networks for Semantic Segmentation - 2019 - ICCV [](https://arxiv.org/pdf/1908.07678.pdf) [](https://github.com/MendelXu/ANN) 35. PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment - 2019 [](https://arxiv.org/pdf/1908.06391.pdf) 36. Semi-Supervised Semantic Segmentation with High- and Low-level Consistency - 2019 [](https://arxiv.org/pdf/1908.05724.pdf) 37. Benchmarking the Robustness of Semantic Segmentation Models - 2019 [](https://arxiv.org/pdf/1908.05005.pdf) [](http://vislearn.de/) 38. Distance Map Loss Penalty Term for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1908.03679.pdf) 39. I Bet You Are Wrong: Gambling Adversarial Networks for Structured Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1908.02711.pdf) 40. SqueezeNAS: Fast neural architecture search for faster semantic segmentation - 2019 - DeepScale [](https://arxiv.org/pdf/1908.01748.pdf) 41. Expectation-Maximization Attention Networks for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1907.13426.pdf) 42. Incremental Learning Techniques for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1907.13372.pdf) 43. Interlaced Sparse Self-Attention for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1907.12273.pdf) 44. DAR-Net: Dynamic Aggregation Network for Semantic Scene Segmentation - 2019 [](https://arxiv.org/pdf/1907.12022.pdf) 45. DABNet: Depth-wise Asymmetric Bottleneck for Real-time Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1907.11357.pdf) [](https://github.com/Reagan1311/DABNet) 46. Cross Attention Network for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1907.10958.pdf) 47. Multi-Class Lane Semantic Segmentation using Efficient Convolutional Networks - 2019 [](https://arxiv.org/pdf/1907.09438.pdf) 48. Efficient Segmentation: Learning Downsampling Near Semantic Boundaries - 2019 [](https://arxiv.org/pdf/1907.07156.pdf) 49. Improving Semantic Segmentation via Dilated Affinity - 2019 [](https://arxiv.org/pdf/1907.07011.pdf) 50. Adaptive Context Encoding Module for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1907.06082.pdf) 51. A Regularized Convolutional Neural Network for Semantic Image Segmentation - 2019 [](https://arxiv.org/pdf/1907.05287.pdf) 52. Deep Learning-Based Semantic Segmentation of Microscale Objects - 2019 生物细胞分割 [](https://arxiv.org/pdf/1907.03576.pdf) 53. SAN: Scale-Aware Network for Semantic Segmentation of High-Resolution Aerial Images - 2019 高分辨率卫星图像分割 [](https://arxiv.org/pdf/1907.03089.pdf) 54. Hard Pixels Mining: Learning Using Privileged Information for Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1906.11437.pdf) 55. ESNet: An Efficient Symmetric Network for Real-time Semantic Segmentation - 2019 [](https://arxiv.org/pdf/1906.09826.pdf) 56. IMP: Instance Mask Projection for High Accuracy Semantic Segmentation of Things - 2019 [](https://arxiv.org/pdf/1906.06597.pdf) 57. Universal Barcode Detector via Semantic Segmentation - 2019 条形码分割 [](https://arxiv.org/pdf/1906.06281.pdf) 58. Cross-view Semantic Segmentation for Sensing Surroundings - 2019 [](https://arxiv.org/pdf/1906.03560.pdf) [](https://github.com/pbw-Berwin/View-Parsing-Network) [](https://view-parsing-network.github.io/) 59. Zero-Shot Semantic Segmentation - 2019 - NeurlPS [](https://arxiv.org/pdf/1906.00817.pdf) [](https://github.com/valeoai/ZS3) 60. Implicit Background Estimation for Semantic Segmentation - 2019 [](https://arxiv.org/abs/1905.13306) [](https://github.com/olivesgatech/implicit-background-estimation) 61. Gated-SCNN: Gated Shape CNNs for Semantic Segmentation - 2019 - NVIDIA [](http://arxiv.org/abs/1907.05740) [](https://nv-tlabs.github.io/GSCNN/) 62. FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation - 2019 [](https://arxiv.org/abs/1903.11816) [](http://wuhuikai.me/FastFCNProject/) [](https://github.com/wuhuikai/FastFCN) 63. Structured Knowledge Distillation for Semantic Segmentation - CVPR2019 [](https://arxiv.org/abs/1903.04197) 64. Co-Occurrent Features in Semantic Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Co-Occurrent_Features_in_Semantic_Segmentation_CVPR_2019_paper.pdf) 65. Semantic Projection Network for Zero- and Few-Label Semantic Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Xian_Semantic_Projection_Network_for_Zero-_and_Few-Label_Semantic_Segmentation_CVPR_2019_paper.pdf) 66. Context-Reinforced Semantic Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhou_Context-Reinforced_Semantic_Segmentation_CVPR_2019_paper.pdf) 67. SwiftNet - In Defense of Pre-trained ImageNet Architectures for Real-time Semantic Segmentation of Road-driving Images - CVPR2019 [](https://arxiv.org/abs/1903.08469) [](https://github.com/orsic/swiftnet) 68. All About Structure: Adapting Structural Information Across Domains for Boosting Semantic Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Chang_All_About_Structure_Adapting_Structural_Information_Across_Domains_for_Boosting_CVPR_2019_paper.pdf) 69. Not All Areas Are Equal: Transfer Learning for Semantic Segmentation via Hierarchical Region Selection - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Not_All_Areas_Are_Equal_Transfer_Learning_for_Semantic_Segmentation_CVPR_2019_paper.pdf) 70. Learning Semantic Segmentation From Synthetic Data: A Geometrically Guided Input-Output Adaptation Approach - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Chen_Learning_Semantic_Segmentation_From_Synthetic_Data_A_Geometrically_Guided_Input-Output_CVPR_2019_paper.pdf) 71. Box-Driven Class-Wise Region Masking and Filling Rate Guided Loss for Weakly Supervised Semantic Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Song_Box-Driven_Class-Wise_Region_Masking_and_Filling_Rate_Guided_Loss_for_CVPR_2019_paper.pdf) 72. Cyclic Guidance for Weakly Supervised Joint Detection and Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Shen_Cyclic_Guidance_for_Weakly_Supervised_Joint_Detection_and_Segmentation_CVPR_2019_paper.pdf) 73. Geometry-Aware Distillation for Indoor Semantic Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Jiao_Geometry-Aware_Distillation_for_Indoor_Semantic_Segmentation_CVPR_2019_paper.pdf) 74. Seamless Scene Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Porzi_Seamless_Scene_Segmentation_CVPR_2019_paper.pdf) 75. ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Vu_ADVENT_Adversarial_Entropy_Minimization_for_Domain_Adaptation_in_Semantic_Segmentation_CVPR_2019_paper.pdf) [](https://github.com/valeoai/ADVENT) 76. Taking a Closer Look at Domain Shift: Category-Level Adversaries for Semantics Consistent Domain Adaptation - CVPR2019 [](openaccess.thecvf.com/content_CVPR_2019/papers/Luo_Taking_a_Closer_Look_at_Domain_Shift_Category-Level_Adversaries_for_CVPR_2019_paper.pdf) 77. PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical Part-Level 3D Object Understanding - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Mo_PartNet_A_Large-Scale_Benchmark_for_Fine-Grained_and_Hierarchical_Part-Level_3D_CVPR_2019_paper.pdf) [](https://cs.stanford.edu/~kaichun/partnet/) 78. A Cross-Season Correspondence Dataset for Robust Semantic Segmentation - CVPR2019 [](http://openaccess.thecvf.com/content_CVPR_2019/papers/Larsson_A_Cross-Season_Correspondence_Dataset_for_Robust_Semantic_Segmentation_CVPR_2019_paper.pdf) 79. DFANet: Deep Feature Aggregation for Real-Time Semantic Segmentation-Megvii-2019 [](https://arxiv.org/abs/1904.02216) 80. DADA: Depth-aware Domain Adaptation in Semantic Segmentation - 2019 [](https://arxiv.org/abs/1904.01886) 81. GFF: Gated Fully Fusion for Semantic Segmentation - 2019 [](https://arxiv.org/abs/1904.01803) 82. DSNet: An Efficient CNN for Road Scene Segmentation - 2019 [](https://arxiv.org/abs/1904.05022) 83. FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stochastic Inference - CVPR2019 [](https://arxiv.org/abs/1902.10421) 84. An efficient solution for semantic segmentation: ShuffleNet V2 with atrous separable convolutions - 2019 [](https://arxiv.org/abs/1902.07476) 85. Fast-SCNN: Fast Semantic Segmentation Network - 2019 [](https://arxiv.org/abs/1902.04502) 86. Data augmentation using learned transforms for one-shot medical image segmentation - CVPR2019 [](https://arxiv.org/abs/1902.09383) 87. MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation - 2019 [](https://arxiv.org/abs/1902.04049) 88. CCNet: Criss-Cross Attention for Semantic Segmentation - 2018 [](https://arxiv.org/abs/1811.11721v1) [](https://github.com/speedinghzl/CCNet) 89. A PyTorch Semantic Segmentation Toolbox - 2018 [](https://weiyc.github.io/assets/pdf/toolbox.pdf) [](https://github.com/speedinghzl/pytorch-segmentation-toolbox) 90. ShelfNet for Real-time Semantic Segmentation - 2018 [](https://arxiv.org/abs/1811.11254) [](https://github.com/juntang-zhuang/ShelfNet) 91. Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training - ECCV2018 [](https://arxiv.org/pdf/1810.07911.pdf) [](https://yzou2.github.io/project/self-training/) [](https://github.com/yzou2/cbst) 92. Searching for Efficient Multi-Scale Architectures for Dense Image Prediction - 2018 - Deeplab [](https://arxiv.org/abs/1809.04184) [](https://github.com/tensorflow/models/tree/master/research/deeplab) 93. Light-Weight RefineNet for Real-Time Semantic Segmentation - bmvc2018 [](http://bmvc2018.org/contents/papers/0494.pdf) [](https://github.com/DrSleep/light-weight-refinenet) 94. Dual Attention Network for Scene Segmentation - 2018 [](https://arxiv.org/pdf/1809.02983v1.pdf) 95. BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation - ECCV 2018 - Face++ [](https://arxiv.org/pdf/1808.00897v1.pdf) [](https://github.com/ycszen/TorchSeg) 96. Adaptive Affinity Field for Semantic Segmentation - ECCV2018 [](https://arxiv.org/pdf/1803.10335.pdf) [](https://liuziwei7.github.io/projects/AAF) 97. Recurrent Iterative Gating Networks for Semantic Segmentation - WACV2019 [](https://arxiv.org/abs/1811.08043) 98. Dense Decoder Shortcut Connections for Single-Pass Semantic Segmentation - CVPR2018 [](http://openaccess.thecvf.com/content_cvpr_2018/papers/Bilinski_Dense_Decoder_Shortcut_CVPR_2018_paper.pdf) 99. DenseASPP for Semantic Segmentation in Street Scenes - CVPR2018 [](http://openaccess.thecvf.com/content_cvpr_2018/papers/Yang_DenseASPP_for_Semantic_CVPR_2018_paper.pdf) [](https://github.com/DeepMotionAIResearch/DenseASPP) 100. Pyramid Attention Network for Semantic Segmentation - 2018 - Face++ [](https://arxiv.org/pdf/1805.10180v1.pdf) 101. Autofocus Layer for Semantic Segmentation - 2018 [](https://github.com/yaq007/Autofocus-Layer) 102. ExFuse: Enhancing Feature Fusion for Semantic Segmentation - ECCV2018 - Face++ [](https://arxiv.org/pdf/1804.03821.pdf) 103. DifNet: Semantic Segmentation by Diffusion Networks - 2018 [](https://arxiv.org/pdf/1805.08015v1.pdf) 104. Convolutional CRFs for Semantic Segmentation - 2018 [](https://arxiv.org/pdf/1805.04777v2.pdf)[](https://github.com/MarvinTeichmann/ConvCRF) 105. ContextNet: Exploring Context and Detail for Semantic Segmentation in Real-time - 2018 [](https://arxiv.org/pdf/1805.04554v1.pdf) 106. Learning a Discriminative Feature Network for Semantic Segmentation - CVPR2018 - Face++ [](https://arxiv.org/abs/1804.09337) 107. Vortex Pooling: Improving Context Representation in Semantic Segmentation - 2018 [](https://arxiv.org/pdf/1804.06242v2.pdf) 108. Fully Convolutional Adaptation Networks for Semantic Segmentation - CVPR2018 [](https://arxiv.org/pdf/1804.08286v1.pdf) 109. A Multi-Layer Approach to Superpixel-based Higher-order Conditional Random Field for Semantic Image Segmentation - 2018 [](https://arxiv.org/abs/1804.02032) 110. Context Encoding for Semantic Segmentation - 2018 [](https://arxiv.org/pdf/1803.08904.pdf) [](https://github.com/zhanghang1989/PyTorch-Encoding) [](https://hangzhang.org/PyTorch-Encoding/experiments/segmentation.html) [](https://hangzhang.org/slides/EncNet_slides.pdf) 111. ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation - ECCV2018 [](https://arxiv.org/pdf/1803.06815v2.pdf) [](https://github.com/sacmehta/ESPNet) 112. Dynamic-structured Semantic Propagation Network - 2018 - CMU [](https://arxiv.org/pdf/1803.06067.pdf) 113. ShuffleSeg: Real-time Semantic Segmentation Network-2018 [](https://arxiv.org/pdf/1803.03816v1.pdf) [](https://github.com/MSiam/TFSegmentation) 114. RTSeg: Real-time Semantic Segmentation Comparative Study - 2018 [](https://arxiv.org/pdf/1803.02758) [](https://github.com/MSiam/TFSegmentation) 115. Decoupled Spatial Neural Attention for Weakly Supervised Semantic Segmentation - 2018 [](https://arxiv.org/pdf/1803.02563v1.pdf) 116. DeepLabV3+:Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation - 2018 - Google [](https://arxiv.org/pdf/1802.02611.pdf) [](https://github.com/tensorflow/models/tree/master/research/deeplab) [](https://github.com/bonlime/keras-deeplab-v3-plus) 117. Adversarial Learning for Semi-Supervised Semantic Segmentation - 2018 [](https://arxiv.org/pdf/1802.07934v1.pdf) [](https://github.com/hfslyc/AdvSemiSeg) 118. Locally Adaptive Learning Loss for Semantic Image Segmentation - 2018 [](https://arxiv.org/pdf/1802.08290v2.pdf) 119. Learning to Adapt Structured Output Space for Semantic Segmentation - 2018 [](https://arxiv.org/abs/1802.10349v1.pdf) 120. Improved Image Segmentation via Cost Minimization of Multiple Hypotheses - 2018 [](https://arxiv.org/pdf/1802.00088.pdf) [](https://github.com/pubgeo/cmmh_segmentation) 121. TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation - 2018 - Kaggle [](https://arxiv.org/abs/1801.05746) [](https://github.com/ternaus/TernausNet) [](https://www.kaggle.com/c/carvana-image-masking-challenge) 122. Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation - 2018 - Google [](https://arxiv.org/pdf/1801.04381.pdf) 123. End-to-end Detection-Segmentation Network With ROI Convolution - 2018 [](https://arxiv.org/pdf/1801.02722.pdf) 124. Mix-and-Match Tuning for Self-Supervised Semantic Segmentation - AAAI2018 [](http://mmlab.ie.cuhk.edu.hk/projects/M&M/) [](https://arxiv.org/pdf/1712.00661.pdf) [](https://github.com/XiaohangZhan/mix-and-match) 125. Learning to Segment Every Thing-2017 [](https://arxiv.org/pdf/1711.10370.pdf) [](https://github.com/facebookresearch/Detectron) [](https://github.com/skrish13/PyTorch-mask-x-rcnn) 126. Deep Dual Learning for Semantic Image Segmentation-2017 [](http://personal.ie.cuhk.edu.hk/~pluo/pdf/luoWLWiccv17.pdf) 127. Scene Parsing with Global Context Embedding - ICCV2017 [](https://arxiv.org/pdf/1710.06507v1.pdf) 128. FoveaNet: Perspective-aware Urban Scene Parsing - ICCV2017 [](http://openaccess.thecvf.com/content_ICCV_2017/papers/Li_FoveaNet_Perspective-Aware_Urban_ICCV_2017_paper.pdf) 129. Segmentation-Aware Convolutional Networks Using Local Attention Masks - 2017 [](https://arxiv.org/pdf/1708.04607.pdf) [](https://github.com/aharley/segaware) [](http://www.cs.cmu.edu/~aharley/segaware/) 130. Stacked Deconvolutional Network for Semantic Segmentation-2017 [](https://arxiv.org/pdf/1708.04943.pdf) 131. Semantic Segmentation via Structured Patch Prediction, Context CRF and Guidance CRF - CVPR2017 [](http://openaccess.thecvf.com/content_cvpr_2017/papers/Shen_Semantic_Segmentation_via_CVPR_2017_paper.pdf) [](https://github.com/FalongShen/SegModel) 132. BlitzNet: A Real-Time Deep Network for Scene Understanding-2017 [](http://thoth.inrialpes.fr/research/blitznet/) [](https://github.com/dvornikita/blitznet) [](https://arxiv.org/pdf/1708.02813.pdf) 133. Efficient Yet Deep Convolutional Neural Networks for Semantic Segmentation -2017 [](https://arxiv.org/pdf/1707.08254v2.pdf) [](https://github.com/SharifAmit/DilatedFCNSegmentation) 134. LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation - 2017 [](https://arxiv.org/pdf/1707.03718.pdf) [](https://github.com/e-lab/LinkNet) 135. Rethinking Atrous Convolution for Semantic Image Segmentation-2017(DeeplabV3) [](https://arxiv.org/pdf/1706.05587.pdf) 136. Learning Object Interactions and Descriptions for Semantic Image Segmentation-2017 [](http://personal.ie.cuhk.edu.hk/~pluo/pdf/wangLLWcvpr17.pdf) 137. Pixel Deconvolutional Networks-2017 [](https://github.com/HongyangGao/PixelDCN) [](https://arxiv.org/abs/1705.06820) 138. Dilated Residual Networks-2017 [](http://vladlen.info/papers/DRN.pdf) [](https://github.com/fyu/drn) 139. Recurrent Scene Parsing with Perspective Understanding in the Loop - 2017 [](http://www.ics.uci.edu/~skong2/recurrentDepthSeg) [](https://arxiv.org/abs/1705.07238) [](https://github.com/aimerykong/Recurrent-Scene-Parsing-with-Perspective-Understanding-in-the-loop) 140. A Review on Deep Learning Techniques Applied to Semantic Segmentation-2017 [](https://arxiv.org/abs/1704.06857) 141. BiSeg: Simultaneous Instance Segmentation and Semantic Segmentation with Fully Convolutional Networks [](https://arxiv.org/abs/1706.02135) 142. Efficient ConvNet for Real-time Semantic Segmentation - 2017 [](http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf) 143. ICNet for Real-Time Semantic Segmentation on High-Resolution Images-2017 [](https://hszhao.github.io/projects/icnet/) [](https://github.com/hszhao/ICNet) [](https://arxiv.org/abs/1704.08545) [](https://www.youtube.com/watch?v=qWl9idsCuLQ) 144. Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade-2017 [](https://arxiv.org/abs/1704.01344) [](https://liuziwei7.github.io/papers/layercascade_poster.pdf) [](https://liuziwei7.github.io/projects/LayerCascade.html) [](https://github.com/liuziwei7/region-conv) [](https://liuziwei7.github.io/papers/layercascade_slides.pdf) 145. Loss Max-Pooling for Semantic Image Segmentation-2017 [](https://arxiv.org/abs/1704.02966) 146. Annotating Object Instances with a Polygon-RNN-2017 [](http://www.cs.toronto.edu/polyrnn/) [](https://arxiv.org/abs/1704.05548) 147. Feature Forwarding: Exploiting Encoder Representations for Efficient Semantic Segmentation-2017 [](https://codeac29.github.io/projects/linknet/) [](https://github.com/e-lab/LinkNet) 148. Reformulating Level Sets as Deep Recurrent Neural Network Approach to Semantic Segmentation-2017 [](https://arxiv.org/abs/1704.03593) 149. Adversarial Examples for Semantic Image Segmentation-2017 [](https://arxiv.org/abs/1703.01101) 150. Large Kernel Matters - Improve Semantic Segmentation by Global Convolutional Network-2017 [](https://arxiv.org/abs/1703.02719) 151. Label Refinement Network for Coarse-to-Fine Semantic Segmentation-2017 [](https://www.arxiv.org/abs/1703.00551) 152. **PixelNet: Representation of the pixels, by the pixels, and for the pixels-2017** [](http://www.cs.cmu.edu/~aayushb/pixelNet/) [](https://github.com/aayushbansal/PixelNet) [](https://arxiv.org/abs/1702.06506) 153. LabelBank: Revisiting Global Perspectives for Semantic Segmentation-2017 [](https://arxiv.org/abs/1703.09891) 154. Progressively Diffused Networks for Semantic Image Segmentation-2017 [](https://arxiv.org/abs/1702.05839) 155. Understanding Convolution for Semantic Segmentation-2017 [](https://drive.google.com/drive/folders/0B72xLTlRb0SoREhISlhibFZTRmM) [](https://github.com/TuSimple/TuSimple-DUC/) [](https://arxiv.org/abs/1702.08502) 156. Predicting Deeper into the Future of Semantic Segmentation-2017 [](https://arxiv.org/abs/1703.07684) 157. **Pyramid Scene Parsing Network-2017** [](https://hszhao.github.io/projects/pspnet/) [](https://github.com/hszhao/PSPNet) [](https://arxiv.org/abs/1612.01105) [](http://image-net.org/challenges/talks/2016/SenseCUSceneParsing.pdf) 158. FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation-2016 [](https://arxiv.org/abs/1612.02649) 159. FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics-2016 [](https://github.com/GunhoChoi/FusionNet_Pytorch) [](https://arxiv.org/abs/1612.05360) 160. RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation-2016 [](https://github.com/guosheng/refinenet) [](https://arxiv.org/abs/1611.06612) [](https://github.com/thomasjpfan/pytorch_refinenet) 161. Learning from Weak and Noisy Labels for Semantic Segmentation - 2017 [](http://repository.kaust.edu.sa/kaust/bitstream/10754/608585/1/07450177.pdf) 162. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation [](https://github.com/SimJeg/FC-DenseNet) [](https://github.com/titu1994/Fully-Connected-DenseNets-Semantic-Segmentation) [](https://github.com/0bserver07/One-Hundred-Layers-Tiramisu) [](https://arxiv.org/abs/1611.09326) 163. Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes [](https://github.com/TobyPDE/FRRN) [](https://arxiv.org/abs/1611.08323) 164. PixelNet: Towards a General Pixel-level Architecture-2016 [