Color Thief 是用于提取图片的主要颜色或者代表性颜色调色板的工具. 其使用是基于 javascript 和 canvas 的.
color-thief-py 是基于 Python 和 Pillow 的实现.
1. Color Thief
[1] - 官网及 Demo:https://lokeshdhakar.com/projects/color-thief/
[2] - Github:lokesh/color-thief
[3] - Blog:https://lokeshdhakar.com/color-thief/
git clone https://github.com/lokesh/color-thief.git
From:https://lokeshdhakar.com/projects/color-thief/
1.1. 使用
在页面中 include jquery
、quantize.js
和 color-thief.js
,其使用如下:
myImage = $('#myImage');
dominantColor = getDominantColor(myImage);
paletteArray = createPalette(myImage, 10); // 2nd argument sets # of colors in palette
1.2. 示例1 - 获取图片的主色
Get the dominant color from an image.
var colorThief = new ColorThief();
colorThief.getColor(sourceImage);
getColor(sourceImage[, quality])
returns [num, num, num]
1.3. 示例2 - 构建图片的颜色调色板
以构建图片的 8 种颜色调色板为例:
var colorThief = new ColorThief();
colorThief.getPalette(sourceImage, 8);
getPalette(sourceImage[, colorCount, quality])
returns [ [num, num, num], [num, num, num], ... ]
2. Color Thief - Python 库
[1] - Github:fengsp/color-thief-py. Color Thief 的 Python 版.
2.1. pip 安装
pip install colorthief
2.2. 使用
from colorthief import ColorThief
color_thief = ColorThief('/path/to/test.jpg')
# get the dominant color
dominant_color = color_thief.get_color(quality=1)
print(dominant_color)
# build a color palette
palette = color_thief.get_palette(color_count=3)
print(palette)
对于图片:
输出如:
#dominant color
(193, 185, 174)
#color palette
[(190, 183, 172), (42, 40, 38), (133, 108, 74), (91, 76, 66)]
2.3. demo
# -*- coding: utf-8 -*-
import sys
if sys.version_info < (3, 0):
from urllib2 import urlopen
else:
from urllib.request import urlopen
import io
from colorthief import ColorThief
fd = urlopen('http://lokeshdhakar.com/projects/color-thief/img/photo1.jpg')
f = io.BytesIO(fd.read())
color_thief = ColorThief(f)
print(color_thief.get_color(quality=1))
print(color_thief.get_palette(quality=1))
2.4. Python API
class ColorThief(object):
def __init__(self, file):
"""Create one color thief for one image.
:param file: A filename (string) or a file object. The file object
must implement `read()`, `seek()`, and `tell()` methods,
and be opened in binary mode.
"""
pass
def get_color(self, quality=10):
"""Get the dominant color.
:param quality: quality settings, 1 is the highest quality, the bigger
the number, the faster a color will be returned but
the greater the likelihood that it will not be the
visually most dominant color
:return tuple: (r, g, b)
"""
pass
def get_palette(self, color_count=10, quality=10):
"""Build a color palette. We are using the median cut algorithm to
cluster similar colors.
:param color_count: the size of the palette, max number of colors
:param quality: quality settings, 1 is the highest quality, the bigger
the number, the faster the palette generation, but the
greater the likelihood that colors will be missed.
:return list: a list of tuple in the form (r, g, b)
"""
pass
具体的:
# -*- coding: utf-8 -*-
__version__ = '0.2.1'
import math
from PIL import Image
class cached_property(object):
"""Decorator that creates converts a method with a single
self argument into a property cached on the instance.
"""
def __init__(self, func):
self.func = func
def __get__(self, instance, type):
res = instance.__dict__[self.func.__name__] = self.func(instance)
return res
class ColorThief(object):
"""Color thief main class."""
def __init__(self, file):
"""Create one color thief for one image.
:param file: A filename (string) or a file object. The file object
must implement `read()`, `seek()`, and `tell()` methods,
and be opened in binary mode.
"""
self.image = Image.open(file)
def get_color(self, quality=10):
"""Get the dominant color.
:param quality: quality settings, 1 is the highest quality, the bigger
the number, the faster a color will be returned but
the greater the likelihood that it will not be the
visually most dominant color
:return tuple: (r, g, b)
"""
palette = self.get_palette(5, quality)
return palette[0]
def get_palette(self, color_count=10, quality=10):
"""Build a color palette. We are using the median cut algorithm to
cluster similar colors.
:param color_count: the size of the palette, max number of colors
:param quality: quality settings, 1 is the highest quality, the bigger
the number, the faster the palette generation, but the
greater the likelihood that colors will be missed.
:return list: a list of tuple in the form (r, g, b)
"""
image = self.image.convert('RGBA')
width, height = image.size
pixels = image.getdata()
pixel_count = width * height
valid_pixels = []
for i in range(0, pixel_count, quality):
r, g, b, a = pixels[i]
# If pixel is mostly opaque and not white
if a >= 125:
if not (r > 250 and g > 250 and b > 250):
valid_pixels.append((r, g, b))
# Send array to quantize function which clusters values
# using median cut algorithm
cmap = MMCQ.quantize(valid_pixels, color_count)
return cmap.palette
class MMCQ(object):
"""Basic Python port of the MMCQ (modified median cut quantization)
algorithm from the Leptonica library (http://www.leptonica.com/).
"""
SIGBITS = 5
RSHIFT = 8 - SIGBITS
MAX_ITERATION = 1000
FRACT_BY_POPULATIONS = 0.75
@staticmethod
def get_color_index(r, g, b):
return (r << (2 * MMCQ.SIGBITS)) + (g << MMCQ.SIGBITS) + b
@staticmethod
def get_histo(pixels):
"""histo (1-d array, giving the number of pixels in each quantized
region of color space)
"""
histo = dict()
for pixel in pixels:
rval = pixel[0] >> MMCQ.RSHIFT
gval = pixel[1] >> MMCQ.RSHIFT
bval = pixel[2] >> MMCQ.RSHIFT
index = MMCQ.get_color_index(rval, gval, bval)
histo[index] = histo.setdefault(index, 0) + 1
return histo
@staticmethod
def vbox_from_pixels(pixels, histo):
rmin = 1000000
rmax = 0
gmin = 1000000
gmax = 0
bmin = 1000000
bmax = 0
for pixel in pixels:
rval = pixel[0] >> MMCQ.RSHIFT
gval = pixel[1] >> MMCQ.RSHIFT
bval = pixel[2] >> MMCQ.RSHIFT
rmin = min(rval, rmin)
rmax = max(rval, rmax)
gmin = min(gval, gmin)
gmax = max(gval, gmax)
bmin = min(bval, bmin)
bmax = max(bval, bmax)
return VBox(rmin, rmax, gmin, gmax, bmin, bmax, histo)
@staticmethod
def median_cut_apply(histo, vbox):
if not vbox.count:
return (None, None)
rw = vbox.r2 - vbox.r1 + 1
gw = vbox.g2 - vbox.g1 + 1
bw = vbox.b2 - vbox.b1 + 1
maxw = max([rw, gw, bw])
# only one pixel, no split
if vbox.count == 1:
return (vbox.copy, None)
# Find the partial sum arrays along the selected axis.
total = 0
sum_ = 0
partialsum = {}
lookaheadsum = {}
do_cut_color = None
if maxw == rw:
do_cut_color = 'r'
for i in range(vbox.r1, vbox.r2+1):
sum_ = 0
for j in range(vbox.g1, vbox.g2+1):
for k in range(vbox.b1, vbox.b2+1):
index = MMCQ.get_color_index(i, j, k)
sum_ += histo.get(index, 0)
total += sum_
partialsum[i] = total
elif maxw == gw:
do_cut_color = 'g'
for i in range(vbox.g1, vbox.g2+1):
sum_ = 0
for j in range(vbox.r1, vbox.r2+1):
for k in range(vbox.b1, vbox.b2+1):
index = MMCQ.get_color_index(j, i, k)
sum_ += histo.get(index, 0)
total += sum_
partialsum[i] = total
else: # maxw == bw
do_cut_color = 'b'
for i in range(vbox.b1, vbox.b2+1):
sum_ = 0
for j in range(vbox.r1, vbox.r2+1):
for k in range(vbox.g1, vbox.g2+1):
index = MMCQ.get_color_index(j, k, i)
sum_ += histo.get(index, 0)
total += sum_
partialsum[i] = total
for i, d in partialsum.items():
lookaheadsum[i] = total - d
# determine the cut planes
dim1 = do_cut_color + '1'
dim2 = do_cut_color + '2'
dim1_val = getattr(vbox, dim1)
dim2_val = getattr(vbox, dim2)
for i in range(dim1_val, dim2_val+1):
if partialsum[i] > (total / 2):
vbox1 = vbox.copy
vbox2 = vbox.copy
left = i - dim1_val
right = dim2_val - i
if left <= right:
d2 = min([dim2_val - 1, int(i + right / 2)])
else:
d2 = max([dim1_val, int(i - 1 - left / 2)])
# avoid 0-count boxes
while not partialsum.get(d2, False):
d2 += 1
count2 = lookaheadsum.get(d2)
while not count2 and partialsum.get(d2-1, False):
d2 -= 1
count2 = lookaheadsum.get(d2)
# set dimensions
setattr(vbox1, dim2, d2)
setattr(vbox2, dim1, getattr(vbox1, dim2) + 1)
return (vbox1, vbox2)
return (None, None)
@staticmethod
def quantize(pixels, max_color):
"""Quantize.
:param pixels: a list of pixel in the form (r, g, b)
:param max_color: max number of colors
"""
if not pixels:
raise Exception('Empty pixels when quantize.')
if max_color < 2 or max_color > 256:
raise Exception('Wrong number of max colors when quantize.')
histo = MMCQ.get_histo(pixels)
# check that we aren't below maxcolors already
if len(histo) <= max_color:
# generate the new colors from the histo and return
pass
# get the beginning vbox from the colors
vbox = MMCQ.vbox_from_pixels(pixels, histo)
pq = PQueue(lambda x: x.count)
pq.push(vbox)
# inner function to do the iteration
def iter_(lh, target):
n_color = 1
n_iter = 0
while n_iter < MMCQ.MAX_ITERATION:
vbox = lh.pop()
if not vbox.count: # just put it back
lh.push(vbox)
n_iter += 1
continue
# do the cut
vbox1, vbox2 = MMCQ.median_cut_apply(histo, vbox)
if not vbox1:
raise Exception("vbox1 not defined; shouldn't happen!")
lh.push(vbox1)
if vbox2: # vbox2 can be null
lh.push(vbox2)
n_color += 1
if n_color >= target:
return
if n_iter > MMCQ.MAX_ITERATION:
return
n_iter += 1
# first set of colors, sorted by population
iter_(pq, MMCQ.FRACT_BY_POPULATIONS * max_color)
# Re-sort by the product of pixel occupancy times the size in
# color space.
pq2 = PQueue(lambda x: x.count * x.volume)
while pq.size():
pq2.push(pq.pop())
# next set - generate the median cuts using the (npix * vol) sorting.
iter_(pq2, max_color - pq2.size())
# calculate the actual colors
cmap = CMap()
while pq2.size():
cmap.push(pq2.pop())
return cmap
class VBox(object):
"""3d color space box"""
def __init__(self, r1, r2, g1, g2, b1, b2, histo):
self.r1 = r1
self.r2 = r2
self.g1 = g1
self.g2 = g2
self.b1 = b1
self.b2 = b2
self.histo = histo
@cached_property
def volume(self):
sub_r = self.r2 - self.r1
sub_g = self.g2 - self.g1
sub_b = self.b2 - self.b1
return (sub_r + 1) * (sub_g + 1) * (sub_b + 1)
@property
def copy(self):
return VBox(self.r1, self.r2, self.g1, self.g2,
self.b1, self.b2, self.histo)
@cached_property
def avg(self):
ntot = 0
mult = 1 << (8 - MMCQ.SIGBITS)
r_sum = 0
g_sum = 0
b_sum = 0
for i in range(self.r1, self.r2 + 1):
for j in range(self.g1, self.g2 + 1):
for k in range(self.b1, self.b2 + 1):
histoindex = MMCQ.get_color_index(i, j, k)
hval = self.histo.get(histoindex, 0)
ntot += hval
r_sum += hval * (i + 0.5) * mult
g_sum += hval * (j + 0.5) * mult
b_sum += hval * (k + 0.5) * mult
if ntot:
r_avg = int(r_sum / ntot)
g_avg = int(g_sum / ntot)
b_avg = int(b_sum / ntot)
else:
r_avg = int(mult * (self.r1 + self.r2 + 1) / 2)
g_avg = int(mult * (self.g1 + self.g2 + 1) / 2)
b_avg = int(mult * (self.b1 + self.b2 + 1) / 2)
return r_avg, g_avg, b_avg
def contains(self, pixel):
rval = pixel[0] >> MMCQ.RSHIFT
gval = pixel[1] >> MMCQ.RSHIFT
bval = pixel[2] >> MMCQ.RSHIFT
return all([
rval >= self.r1,
rval <= self.r2,
gval >= self.g1,
gval <= self.g2,
bval >= self.b1,
bval <= self.b2,
])
@cached_property
def count(self):
npix = 0
for i in range(self.r1, self.r2 + 1):
for j in range(self.g1, self.g2 + 1):
for k in range(self.b1, self.b2 + 1):
index = MMCQ.get_color_index(i, j, k)
npix += self.histo.get(index, 0)
return npix
class CMap(object):
"""Color map"""
def __init__(self):
self.vboxes = PQueue(lambda x: x['vbox'].count * x['vbox'].volume)
@property
def palette(self):
return self.vboxes.map(lambda x: x['color'])
def push(self, vbox):
self.vboxes.push({
'vbox': vbox,
'color': vbox.avg,
})
def size(self):
return self.vboxes.size()
def nearest(self, color):
d1 = None
p_color = None
for i in range(self.vboxes.size()):
vbox = self.vboxes.peek(i)
d2 = math.sqrt(
math.pow(color[0] - vbox['color'][0], 2) +
math.pow(color[1] - vbox['color'][1], 2) +
math.pow(color[2] - vbox['color'][2], 2)
)
if d1 is None or d2 < d1:
d1 = d2
p_color = vbox['color']
return p_color
def map(self, color):
for i in range(self.vboxes.size()):
vbox = self.vboxes.peek(i)
if vbox['vbox'].contains(color):
return vbox['color']
return self.nearest(color)
class PQueue(object):
"""Simple priority queue."""
def __init__(self, sort_key):
self.sort_key = sort_key
self.contents = []
self._sorted = False
def sort(self):
self.contents.sort(key=self.sort_key)
self._sorted = True
def push(self, o):
self.contents.append(o)
self._sorted = False
def peek(self, index=None):
if not self._sorted:
self.sort()
if index is None:
index = len(self.contents) - 1
return self.contents[index]
def pop(self):
if not self._sorted:
self.sort()
return self.contents.pop()
def size(self):
return len(self.contents)
def map(self, f):
return list(map(f, self.contents))
2.5. 返回颜色调色板的比例
为了在返回颜色调色板时,同时返回其各颜色的比例信息,需要进行如下修改:
更改 colorthief.py 的第 356 行:
由:
def palette(self):
return self.vboxes.map(lambda x: x['color'])
更改为:
def palette(self):
total = sum(self.vboxes.map(lambda x: x['vbox'].count))
return self.vboxes.map(lambda x: x['color'] + (x['vbox'].count, total, int(x['vbox'].count / float(total) * 100)))
From: https://github.com/fengsp/color-thief-py/issues/1#issuecomment-225681712
3. 计算图片中的颜色均值
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from PIL import Image
def compute_average_image_color(img):
width, height = img.size
count, r_total, g_total, b_total = 0, 0, 0, 0
for x in range(0, width):
for y in range(0, height):
r, g, b = img.getpixel((x,y))
r_total += r
g_total += g
b_total += b
count += 1
return (r_total/count, g_total/count, b_total/count)
if __name__ == '__main__':
img_pil = Image.open('/path/to/test.jpg')
mean_rgb = compute_average_image_color(img_pil)
print(mean_rgb)
参考:Extensive EDA of iMaterialist (Fashion) Dataset with Object Detection and Color Analysis